How much protein in the ICU: New data, new ideas

Dr. Gordon S. Doig, Associate Professor in Intensive Care Northern Clinical School Intensive Care Research Unit, University of Sydney, Sydney, Australia gdoig@med.usyd.edu.au www.EvidenceBased.net

© 2014, University of Sydney, Not for reproduction or distribution.

Faculty Disclosures Gordon S. Doig

Relevant financial relationships with a commercial interest:

- Fresenius Kabi, Academic Research Grants (Past), Consultant and Speaker's Honoraria (Current)
- Baxter Healthcare, Academic Research Grant (Current), Consultant and Speaker's Honoraria (Current)
- Nestle Healthcare, Academic Research Grant (Current), Consultant and Speaker's Honoraria (Current)

Overview of Talk

- Context
 - Levels of Evidence
 - Types of Outcomes
- Guideline Recommendations
- Current Evidence
- New Evidence
- Summary

Editorials, Expert Opinion

Case Series, Case Reports

Editorials, Expert Opinion

Case-Control Studies

Case Series, Case Reports

Editorials, Expert Opinion

Cohort Studies

Case-Control Studies

Case Series, Case Reports

Editorials, Expert Opinion

Randomized Controlled Trials

Cohort Studies

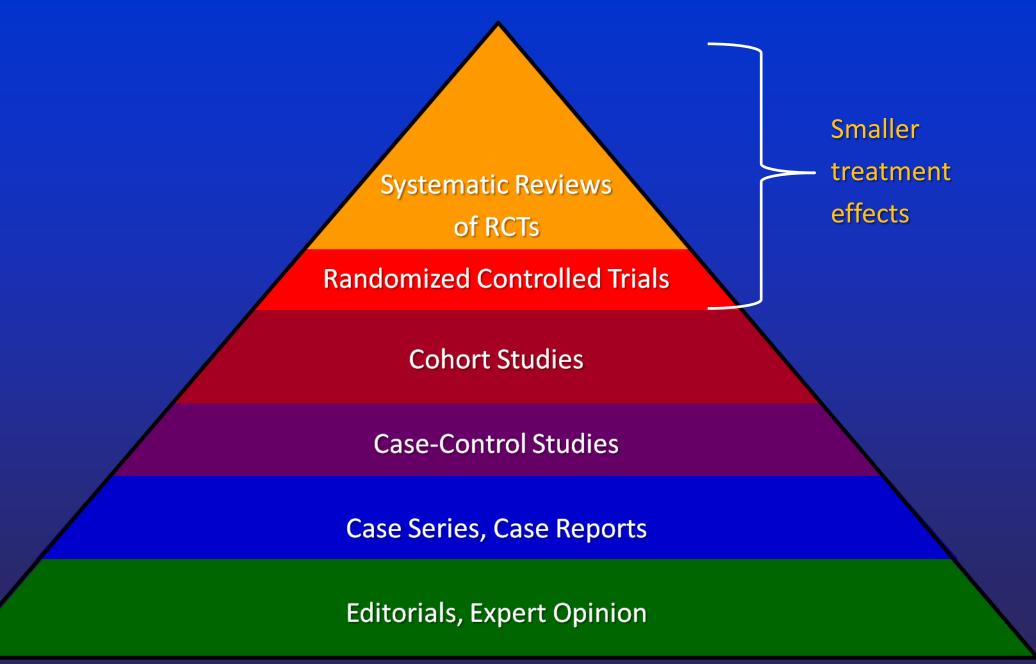
Case-Control Studies

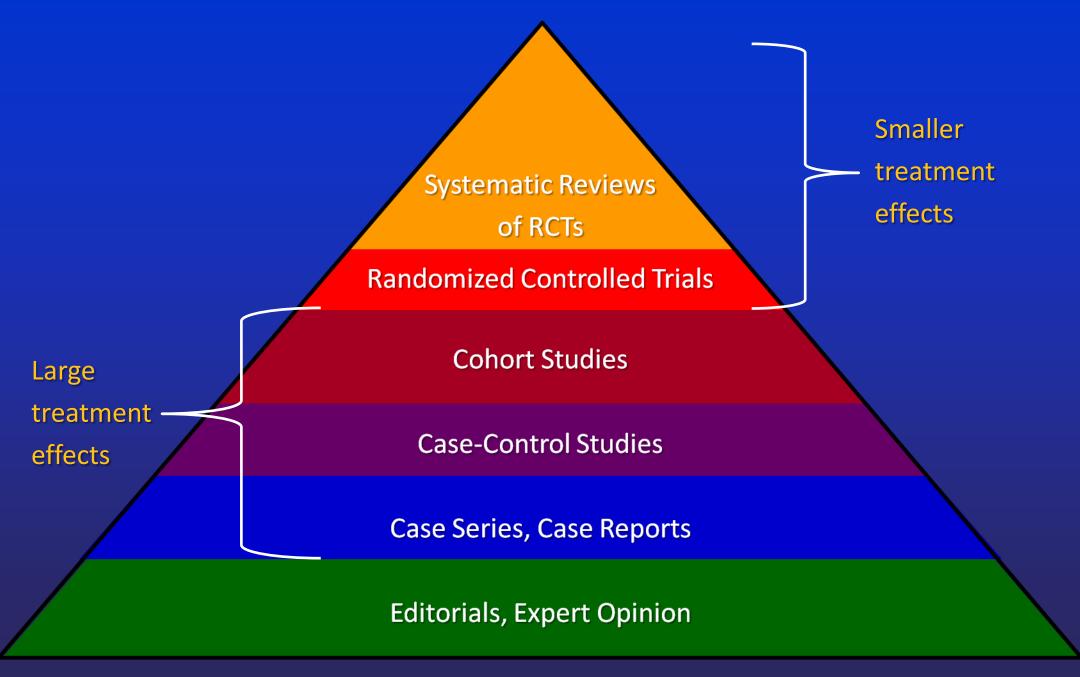
Case Series, Case Reports

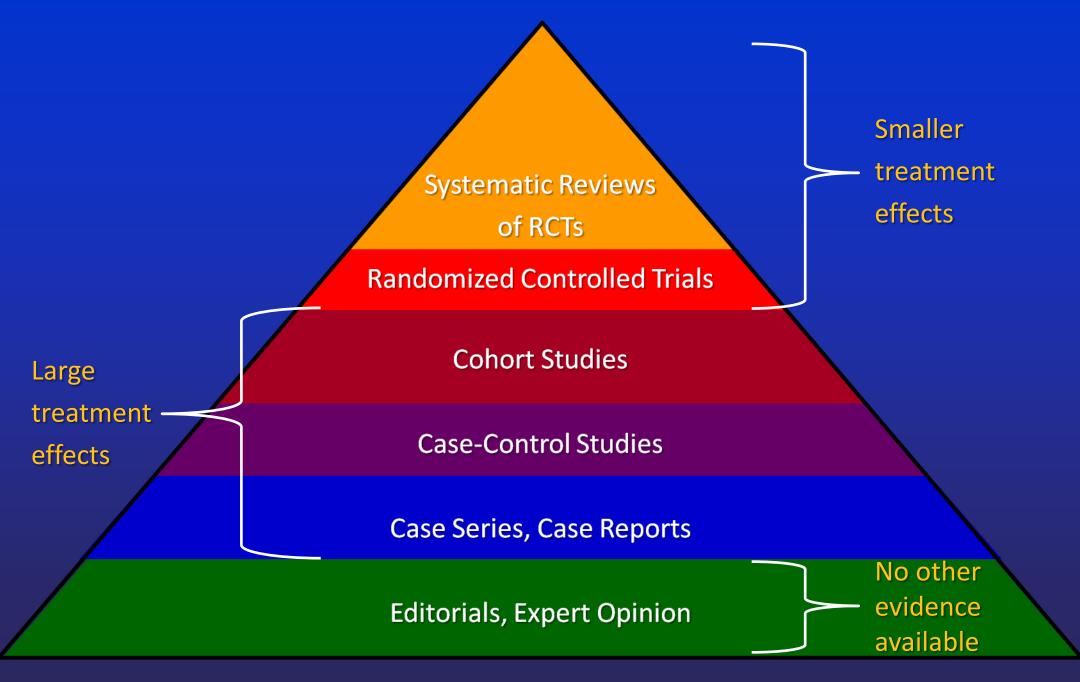
Editorials, Expert Opinion

Systematic Reviews

of RCTs


Randomized Controlled Trials


Cohort Studies


Case-Control Studies

Case Series, Case Reports

Editorials, Expert Opinion

A *patient oriented outcome* is defined as a direct measure of how a patient feels, functions or survives.

A *patient oriented outcome* is defined as a direct measure of how a patient feels, functions or survives.

A *disease oriented outcome* is a laboratory measurement or a physical sign used as a *substitute* for a patient oriented outcome.

A *patient oriented outcome* is defined as a direct measure of how a patient feels, functions or survives.

A *disease oriented outcome* is a laboratory measurement or a physical sign used as a *substitute* for a patient oriented outcome.

Improvements in disease oriented outcomes do not always lead to improvements in patient oriented outcomes.

What happened to the valid POEMs? A survey of review articles on the treatment of type 2 diabetes

Allen F Shaughnessy, David C Slawson

BMJ VOLUME 327 2 AUGUST 2003 bmj.com

 Table 1
 Examples where patient oriented evidence does not confirm disease oriented (surrogate) end points

Disease and intervention	Disease oriented evidence	Patient oriented evidence
Asymptomatic ventricular arrhythmia and encainide and flecainide	Suppression of ventricular arrhythmia	

Table 1 Examples where patient oriented evidence does not confirm disease oriented (surrogate) end points

Disease and intervention	Disease oriented evidence	Patient oriented evidence
Asymptomatic ventricular arrhythmia and encainide and flecainide	Suppression of ventricular arrhythmia	Decreased survival

 Table 1
 Examples where patient oriented evidence does not confirm disease oriented (surrogate) end points

Disease and intervention	Disease oriented evidence	Patient oriented evidence
Asymptomatic ventricular arrhythmia and encainide and flecainide	Suppression of ventricular arrhythmia	Decreased survival
Atrial fibrillation and quinidine to maintain sinus rhythm after conversion	Improved maintenance of sinus rhythm	

Table 1 Examples where patient oriented evidence does not confirm disease oriented (surrogate) end points

Disease and intervention	Disease oriented evidence	Patient oriented evidence
Asymptomatic ventricular arrhythmia and encainide and flecainide	Suppression of ventricular arrhythmia	Decreased survival
Atrial fibrillation and quinidine to maintain sinus rhythm after conversion	Improved maintenance of sinus rhythm	Tripling of mortality

Table 1 Examples where patient oriented evidence does not confirm disease oriented (surrogate) end points

Disease and intervention	Disease oriented evidence	Patient oriented evidence
Asymptomatic ventricular arrhythmia and encainide and flecainide	Suppression of ventricular arrhythmia	Decreased survival
Atrial fibrillation and quinidine to maintain sinus rhythm after conversion	Improved maintenance of sinus rhythm	Tripling of mortality
Ventricular arrhythmia after myocardial infarction and use of lidocaine prophylaxis	Decreased risk of ventricular arrhythmia	

Table 1 Examples where patient oriented evidence does not confirm disease oriented (surrogate) end points

Disease and intervention	Disease oriented evidence	Patient oriented evidence
Asymptomatic ventricular arrhythmia and encainide and flecainide	Suppression of ventricular arrhythmia	Decreased survival
Atrial fibrillation and quinidine to maintain sinus rhythm after conversion	Improved maintenance of sinus rhythm	Tripling of mortality
Ventricular arrhythmia after myocardial infarction and use of lidocaine prophylaxis	Decreased risk of ventricular arrhythmia	Increase in mortality

Table 1 Examples where patient oriented evidence does not confirm disease oriented (surrogate) end points

Disease and intervention	Disease oriented evidence	Patient oriented evidence
Asymptomatic ventricular arrhythmia and encainide and flecainide	Suppression of ventricular arrhythmia	Decreased survival
Atrial fibrillation and quinidine to maintain sinus rhythm after conversion	Improved maintenance of sinus rhythm	Tripling of mortality
Ventricular arrhythmia after myocardial infarction and use of lidocaine prophylaxis	Decreased risk of ventricular arrhythmia	Increase in mortality
Heart failure and use of digoxin	Increase in exercise tolerance	No effect on mortality
Heart failure and milrinone	Improved cardiac output and exercise tolerance	Increased mortality
Blood lipid lowering and clofibrate	Lowered lipid concentration	Increased non-cardiac mortality
Blood pressure lowering with doxazosin	Lowered blood pressure	Increased heart failure
Tumour response and drug treatment	Reduction or elimination of tumour	No effect on survival
Postmenopausal osteoporosis treatment with fluoride therapy	Increased bone mineral density	Increase in non-vertebral fractures

A *patient oriented outcome* is defined as a direct measure of how a patient feels, functions or survives.

A *disease oriented outcome* is a laboratory measurement or a physical sign used as a *substitute* for a patient oriented outcome.

Improvements in disease oriented outcomes do not always lead to improvements in patient oriented outcomes.

A *patient oriented outcome* is defined as a direct measure of how a patient feels, functions or survives.

A *disease oriented outcome* is a laboratory measurement or a physical sign used as a *substitute* for a patient oriented outcome.

Improvements in disease oriented outcomes do not always lead to improvements in patient oriented outcomes.

Before new drugs can be licensed using disease oriented outcomes, FDA requires a definitive clinical trial demonstrating an improvement in a disease oriented outcome leads to an improvement in a patient oriented outcome.

A *patient oriented outcome* is defined as a direct measure of how a patient feels, functions or survives.

A *disease oriented outcome* is a laboratory measurement or a physical sign used as a *substitute* for a patient oriented outcome.

Improvements in disease oriented outcomes do not always lead to improvements in patient oriented outcomes.

- Before new drugs can be licensed using disease oriented outcomes, FDA requires a definitive clinical trial demonstrating an improvement in a disease oriented outcome leads to an improvement in a patient oriented outcome.
 - No measures of 'nutritional efficacy' (Nitrogen balance, caloric intake, percent calories from EN, body composition etc) fulfill this FDA requirement.

Clinical Nutrition 28 (2009) 387-400

Contents lists available at ScienceDirect

"linical Nutr

Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

ESPEN Guidelines on Parenteral Nutrition: Intensive care

Pierre Singer^a, Mette M. Berger^b, Greet Van den Berghe^c, Gianni Biolo^d, Philip Calder^e, Alastair Forbes^f, Richard Griffiths^g, Georg Kreyman^h, Xavier Leverveⁱ, Claude Pichard^j

ESPEN Guidelines on Parenteral Nutrition: Intensive Care. *Clinical Nutrition* **2009**;28(4):359-479.

"linical Nutri

Clinical Nutrition 28 (2009) 387-400

Contents lists available at ScienceDirect

Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

ESPEN Guidelines on Parenteral Nutrition: Intensive care

Pierre Singer ^a, Mette M. Berger ^b, Greet Van den Berghe ^c, Gianni Biolo ^d, Philip Calder ^e, Alastair Forbes ^f, Richard Griffiths ^g, Georg Kreyman ^h, Xavier Leverve ⁱ, Claude Pichard ^j

1.3–1.5 g/kg ideal body weight per day in conjunction with an adequate energy supply (Grade B)

ESPEN Guidelines on Parenteral Nutrition: Intensive Care. Clinical Nutrition 2009;28(4):359-479.

Clinical Nutrition 28 (2009) 387-400

Contents lists available at ScienceDirect

'linical Nutr

Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

ESPEN Guidelines on Parenteral Nutrition: Intensive care

Pierre Singer ^a, Mette M. Berger ^b, Greet Van den Berghe ^c, Gianni Biolo ^d, Philip Calder ^e, Alastair Forbes ^f, Richard Griffiths ^g, Georg Kreyman ^h, Xavier Leverve ⁱ, Claude Pichard ^j

1.3–1.5 g/kg ideal body weight per day in conjunction with an adequate energy supply (Grade B)

 Grade B: At least one well-designed controlled trial without randomization, a quasi-experimental study or observational study

ESPEN Guidelines on Parenteral Nutrition: Intensive Care. *Clinical Nutrition* **2009**;28(4):359-479.

ASPEN guideline recommendations

Special Article

Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary*

Robert G. Martindale, MD, PhD; Stephen A. McClave, MD; Vincent W. Vanek, MD; Mary McCarthy, RN, PhD; Pamela Roberts, MD; Beth Taylor, RD; Juan B. Ochoa, MD; Lena Napolitano, MD; Gail Cresci, RD; American College of Critical Care Medicine; and the A.S.P.E.N. Board of Directors

Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically III Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. *JPEN* **2009**; 33(3):277-316.

ASPEN guideline recommendations

Special Article

Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary*

Robert G. Martindale, MD, PhD; Stephen A. McClave, MD; Vincent W. Vanek, MD; Mary McCarthy, RN, PhD; Pamela Roberts, MD; Beth Taylor, RD; Juan B. Ochoa, MD; Lena Napolitano, MD; Gail Cresci, RD; American College of Critical Care Medicine; and the A.S.P.E.N. Board of Directors

1.2–2.0 g/kg actual body weight per day (Grade E)

Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically III Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. *JPEN* **2009**; 33(3):277-316.

ASPEN guideline recommendations

Special Article

Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary*

Robert G. Martindale, MD, PhD; Stephen A. McClave, MD; Vincent W. Vanek, MD; Mary McCarthy, RN, PhD; Pamela Roberts, MD; Beth Taylor, RD; Juan B. Ochoa, MD; Lena Napolitano, MD; Gail Cresci, RD; American College of Critical Care Medicine; and the A.S.P.E.N. Board of Directors

1.2–2.0 g/kg actual body weight per day (Grade E)

• Grade E: supported by nonrandomized, historical controls, case series, uncontrolled studies, and expert opinion

Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically III Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. *JPEN* **2009**; 33(3):277-316.

Food and Nutrition Sciences, 2013, 4, 201-214 http://dx.doi.org/10.4236/fns.2013.42028 Published Online February 2013 (http://www.scirp.org/journal/fns)

Back to Basics: Estimating Protein Requirements for Adult Hospital Patients. A Systematic Review of Randomised Controlled Trials

Suzie Ferrie^{1,2*}, Samantha Rand², Sharon Palmer³

Ferrie S, Rand S and Palmer S. Back to Basics: Estimating Protein requirements for adult hospital patients. A systematic review of randomised controlled trials. *Food and Nutrition Science*, **2013**;4:201-214.

Back to Basics: Estimating Protein Requirements for Adult Hospital Patients. A Systematic Review of Randomised Controlled Trials

Suzie Ferrie^{1,2*}, Samantha Rand², Sharon Palmer³

		1.2 - 1.5	ESPEN [29]
critically ill		1.2 - 2.0	ASPEN [31]
		1.1 - 1.3	Mesejo [68]
continuous renal replacement therapy		≥ 2.0	Scheinkestel [69]
sepsis		1.2 - 2.3	Greig [70], McCowen [71]
obese critically ill (permissive	BMI 30 - 40	$\geq 2 \text{ g/kgIBW}$	ASPEN [31]
underfeeding: reduced energy intake)	BMI > 40	≥2.5 g/kgIBW	ASI LIN [31]

Back to Basics: Estimating Protein Requirements for Adult Hospital Patients. A Systematic Review of Randomised Controlled Trials

Suzie Ferrie^{1,2*}, Samantha Rand², Sharon Palmer³

Identified 6 parallel group protein dosing trials in ICU populations:

Back to Basics: Estimating Protein Requirements for Adult Hospital Patients. A Systematic Review of Randomised Controlled Trials

Suzie Ferrie^{1,2*}, Samantha Rand², Sharon Palmer³

Identified 6 parallel group protein dosing trials in ICU populations:

• Clifton 1985, severe head injury, N = 20, 10 patients per group

Back to Basics: Estimating Protein Requirements for Adult Hospital Patients. A Systematic Review of Randomised Controlled Trials

Suzie Ferrie^{1,2*}, Samantha Rand², Sharon Palmer³

Identified 6 parallel group protein dosing trials in ICU populations:

- Clifton 1985, severe head injury, N = 20, 10 patients per group
- Huang 1990, acute head injury, N=60, 20 patients per group

Back to Basics: Estimating Protein Requirements for Adult Hospital Patients. A Systematic Review of Randomised Controlled Trials

Suzie Ferrie^{1,2*}, Samantha Rand², Sharon Palmer³

Identified 6 parallel group protein dosing trials in ICU populations:

- Clifton 1985, severe head injury, N = 20, 10 patients per group
- Huang 1990, acute head injury, N=60, 20 patients per group
- Larsson 1990, trauma or burns, N = 39, less than 10 patients per group

Back to Basics: Estimating Protein Requirements for Adult Hospital Patients. A Systematic Review of Randomised Controlled Trials

Suzie Ferrie^{1,2*}, Samantha Rand², Sharon Palmer³

Identified 6 parallel group protein dosing trials in ICU populations:

- Clifton 1985, severe head injury, N = 20, 10 patients per group
- Huang 1990, acute head injury, N=60, 20 patients per group
- Larsson 1990, trauma or burns, N = 39, less than 10 patients per group
- Twyman 1985, head injury, N=21, 10 per patients group

Back to Basics: Estimating Protein Requirements for Adult Hospital Patients. A Systematic Review of Randomised Controlled Trials

Suzie Ferrie^{1,2*}, Samantha Rand², Sharon Palmer³

Identified 6 parallel group protein dosing trials in ICU populations:

- Clifton 1985, severe head injury, N = 20, 10 patients per group
- Huang 1990, acute head injury, N=60, 20 patients per group
- Larsson 1990, trauma or burns, N = 39, less than 10 patients per group
- Twyman 1985, head injury, N=21, 10 per patients group
- Grieg 1987, sepsis, N=9, 5 patients per group

Back to Basics: Estimating Protein Requirements for Adult Hospital Patients. A Systematic Review of Randomised Controlled Trials

Suzie Ferrie^{1,2*}, Samantha Rand², Sharon Palmer³

Identified 6 parallel group protein dosing trials in ICU populations:

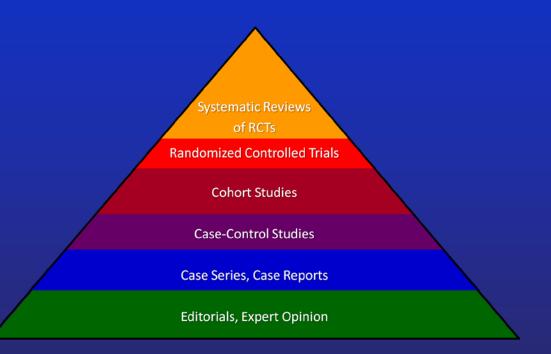
- Clifton 1985, severe head injury, N = 20, 10 patients per group
- Huang 1990, acute head injury, N=60, 20 patients per group
- Larsson 1990, trauma or burns, N = 39, less than 10 patients per group
- Twyman 1985, head injury, N=21, 10 per patients group
- Grieg 1987, sepsis, N=9, 5 patients per group
- Mesejo 2003, critically ill, N=50, 25 patients per group.

Back to Basics: Estimating Protein Requirements for Adult Hospital Patients. A Systematic Review of Randomised Controlled Trials

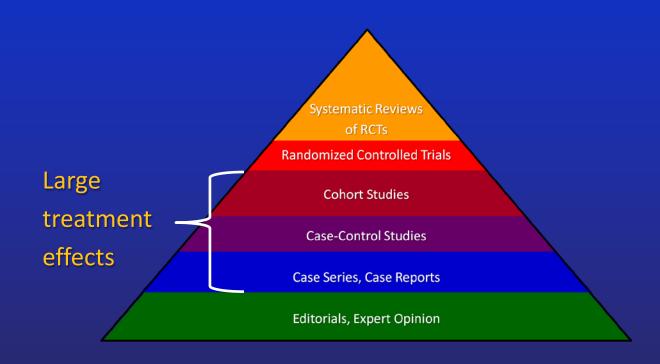
Suzie Ferrie^{1,2*}, Samantha Rand², Sharon Palmer³

Identified 6 parallel group protein dosing trials in ICU populations:

- Clifton 1985, severe head injury, N = 20, 10 patients per group
- Huang 1990, acute head injury, N=60, 20 patients per group
- Larsson 1990, trauma or burns, N = 39, less than 10 patients per group
- Twyman 1985, head injury, N=21, 10 per patients group
- Grieg 1987, sepsis, N=9, 5 patients per group
- Mesejo 2003, critically ill, N=50, 25 patients per group.


None reported any positive effects on patient oriented outcomes.

• Observational study conducted in 167 ICUs across 21 countries



• Observational study conducted in 167 ICUs across 21 countries

Observational study conducted in 167 ICUs across 21 countries

- Observational study conducted in 167 ICUs across 21 countries
- 2,772 mechanically ventilated critically ill patients

- Observational study conducted in 167 ICUs across 21 countries
- 2,772 mechanically ventilated critically ill patients
- Patients with a BMI < 20 demonstrated a significant reduction in mortality with increasing caloric intake (OR 0.52, 95% CI 0.29 to 0.95, P = 0.033) and protein intake (OR 0.60, 95% CI 0.41 to 0.87, P = 0.007)

- Observational study conducted in 167 ICUs across 21 countries
- 2,772 mechanically ventilated critically ill patients
- Patients with a BMI < 20 demonstrated a significant reduction in mortality with increasing caloric intake (OR 0.52, 95% CI 0.29 to 0.95, P = 0.033) and protein intake (OR 0.60, 95% CI 0.41 to 0.87, P = 0.007)
 - Adjusted for nutrition days, age, admission category, admission dx and APACHE II score.

Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, Heyland DK. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. *Intensive Care Med*. 2009 Oct;35(10):1728-37.

(b) Increased protein intake						
BMI group	Unadjusted (n	$= 2,771^{b}$)				
	Odds ratio	95% CI		p value		
		LCL	UCL			
Overall $<\!20$ $20 \text{ to } <\!25$ $25 \text{ to } <\!30$ $30 \text{ to } <\!35$ $35 \text{ to } <\!40$ $\ge\!40$	0.83 0.60 0.79 0.95 0.92 0.70 0.82	$\begin{array}{c} 0.75 \\ 0.43 \\ 0.66 \\ 0.80 \\ 0.72 \\ 0.47 \\ 0.59 \end{array}$	$\begin{array}{c} 0.92 \\ 0.84 \\ 0.94 \\ 1.14 \\ 1.19 \\ 1.04 \\ 1.14 \end{array}$	<0.001 0.003 0.008 0.609 0.533 0.075 0.237		

(b) Increased pr	rotein intake			
BMI group	Unadjusted (n	$= 2,771^{b}$)		
	Odds ratio 95% C			p value
		LCL	UCL	
Overall <20 20 to <25 25 to <30	0.83 0.60 0.79 0.95	0.75 0.43 0.66 0.80	0.92 0.84 0.94 1.14	<0.001 0.003 0.008 0.609
30 to <35 35 to <40 ≥ 40	0.92 0.70 0.82	0.72 0.47 0.59	1.19 1.04 1.14	0.533 0.075 0.237

(b) Increased pr	rotein intake			
BMI group	Unadjusted (n	$= 2,771^{b}$)		
Odds ratio		95% CI		p value
		LCL	UCL	
Overall	0.83	0.75	0.92	< 0.001
<20	0.60	0.43	0.84	0.003
20 to <25	0.79	0.66	0.94	0.008
25 to <30	0.95	0.80	1.14	0.609
30 to <35	0.92	0.72	1.19	0.533
35 to <40	0.70	0.47	1.04	0.075
≥ 40	0.82	0.59	1.14	0.237

(b) Increased protein intake						
BMI group	Unadjusted (n	$= 2,771^{b}$)				
	Odds ratio	95% CI	95% CI			
		LCL	UCL			
Overall	0.83	0.75	0.92	< 0.001		
<20 20 to <25	0.60 0.79	0.43 0.66	$\begin{array}{c} 0.84 \\ 0.94 \end{array}$	$0.003 \\ 0.008$		
25 to <30 30 to <35	0.95 0.92	$\begin{array}{c} 0.80\\ 0.72 \end{array}$	1.14 1.19	0.609 0.533		
35 to <40 >40	0.70 0.82	0.47 0.59	$1.04 \\ 1.14$	0.075 0.237		
				0.207		

(b) Increased pr	rotein intake			
BMI group	Unadjusted (n	$= 2,771^{b}$)		
	Odds ratio	95% CI		p value
		LCL	UCL	
Overall <20 20 to <25 25 to <30 30 to <35 35 to <40	0.83 0.60 0.79 0.95 0.92 0.70	$\begin{array}{r} 0.75 \\ 0.43 \\ 0.66 \\ 0.80 \\ 0.72 \\ 0.47 \\ 0.50 \end{array}$	0.92 0.84 0.94 1.14 1.19 1.04	<0.001 0.003 0.008 0.609 0.533 0.075
≥ 40	0.82	0.59	1.14	0.237

(b) Increased pr	rotein intake			
BMI group	Unadjusted (n	$= 2,771^{b}$)		
Odds ratio		95% CI		p value
		LCL	UCL	
Overall	0.83	0.75	0.92	< 0.001
<20	0.60	0.43	0.84	0.003
20 to <25	0.79	0.66	0.94	0.008
25 to <30	0.95	0.80	1.14	0.609
30 to <35	0.92	0.72	1.19	0.533
35 to <40	0.70	0.47	1.04	0.075
≥ 40	0.82	0.59	1.14	0.237

(b) Increased protein intake						
BMI group	Unadjusted (n	Unadjusted $(n = 2,771^{\rm b})$				
	Odds ratio	95% CI		p value		
		LCL	UCL			
Overall <20 20 to <25	0.83 0.60 0.79	0.75 0.43 0.66	0.92 0.84 0.94	<0.001 0.003 0.008		
$\begin{array}{l} 25 \text{ to } <25\\ 25 \text{ to } <30\\ 30 \text{ to } <35\\ 35 \text{ to } <40\\ >40\end{array}$	0.95 0.92 0.70 0.82	0.00 0.80 0.72 0.47 0.59	1.14 1.19 1.04 1.14	0.609 0.533 0.075 0.237		
<u>_</u> +0	0.02	0.39	1.14	0.237		

(b) Increased pr	rotein intake				(a) Increased energy intake				
BMI group	I group Unadjusted $(n = 2,771^{\rm b})$			BMI group	Unadjusted ($n = 2,772$)				
	Odds ratio	95% CI		p value		Odds ratio	95% CI		p value
		LCL	UCL				LCL	UCL	
Overall <20 20 to <25 25 to <30 30 to <35 35 to <40 ≥40	0.83 0.60 0.79 0.95 0.92 0.70 0.82	$\begin{array}{c} 0.75 \\ 0.43 \\ 0.66 \\ 0.80 \\ 0.72 \\ 0.47 \\ 0.59 \end{array}$	$\begin{array}{c} 0.92 \\ 0.84 \\ 0.94 \\ 1.14 \\ 1.19 \\ 1.04 \\ 1.14 \end{array}$	<0.001 0.003 0.008 0.609 0.533 0.075 0.237	Overall $<\!20$ 20 to $<\!25$ 25 to $<\!30$ 30 to $<\!35$ 35 to $<\!40$ $\ge\!40$	$\begin{array}{c} 0.73 \\ 0.48 \\ 0.61 \\ 1.01 \\ 0.84 \\ 0.47 \\ 0.78 \end{array}$	$\begin{array}{c} 0.62 \\ 0.28 \\ 0.45 \\ 0.75 \\ 0.54 \\ 0.23 \\ 0.41 \end{array}$	$\begin{array}{c} 0.87 \\ 0.83 \\ 0.82 \\ 1.36 \\ 1.30 \\ 0.95 \\ 1.47 \end{array}$	$\begin{array}{c} 0.001 \\ 0.009 \\ 0.001 \\ 0.960 \\ 0.439 \\ 0.036 \\ 0.442 \end{array}$

(b) Increased pro	otein intake				(a) Increased en	nergy intake			
BMI group	II group Unadjusted $(n = 2,771^{b})$			BMI group	Unadjusted ($n = 2,772$)				
	Odds ratio	95% CI		p value		Odds ratio	95% CI		p value
		LCL	UCL				LCL	UCL	
Overall < 20 20 to <25	0.83 0.60 0.79 0.95 0.92 0.70 0.82	$\begin{array}{c} 0.75 \\ 0.43 \\ 0.66 \\ 0.80 \\ 0.72 \\ 0.47 \\ 0.59 \end{array}$	$\begin{array}{c} 0.92 \\ 0.84 \\ 0.94 \\ 1.14 \\ 1.19 \\ 1.04 \\ 1.14 \end{array}$	<0.001 0.003 0.008 0.609 0.533 0.075 0.237	Overall < 20 20 to < 25 25 to < 30 30 to < 35 35 to < 40 ≥ 40	0.73 0.48 0.61 1.01 0.84 0.47 0.78	0.62 0.28 0.45 0.75 0.54 0.23 0.41	0.87 0.83 0.82 1.36 1.30 0.95 1.47	$\begin{array}{c} 0.001 \\ 0.009 \\ 0.001 \\ 0.960 \\ 0.439 \\ 0.036 \\ 0.442 \end{array}$

(b) Increased protein intake						
BMI group	Unadjusted $(n = 2,771^{\rm b})$					
	Odds ratio	95% CI	95% CI			
		LCL	UCL			
Overall	0.83	0.75	0.92	< 0.001		
<20	0.60	0.43	0.84	0.003		
20 to <25	0.79	0.66	0.94	0.008		
25 to <30	0.95	0.80	1.14	0.609		
30 to <35	0.92	0.72	1.19	0.533		
35 to <40	0.70	0.47	1.04	0.075		
≥40	0.82	0.59	1.14	0.237		

(a) Increased energy intake							
BMI group	Unadjusted ($n = 2,772$)						
	Odds ratio	95% CI		p value			
		LCL	UCL				
Overall	0.73	0.62	0.87	0.001			
<20	0.48	0.28	0.83	0.009			
20 to <25	0.61	0.45	0.82	0.001			
25 to <30	1.01	0.75	1.36	0.960			
30 to <35	0.84	0.54	1.30	0.439			
35 to <40	0.47	0.23	0.95	0.036			
≥ 40	0.78	0.41	1.47	0.442			

(b) Increased protein intake								
BMI group	Unadjusted (n	Unadjusted $(n = 2,771^{\rm b})$						
	Odds ratio	95% CI	p value					
		LCL	UCL					
Overall	0.83	0.75	0.92	< 0.001				
<20	0.60	0.43	0.84	0.003				
20 to <25	0.79	0.66	0.94	0.008				
25 to <30	0.95	0.80	1.14	0.609				
30 to <35	0.92	0.72	1.19	0.533				
35 to <40	0.70	0.47	1.04	0.075				
>40	0.82	0.59	1.14	0.237				

(a) Increased en	(a) Increased energy intake							
BMI group	BMI group Unadjusted $(n = 2,772)$							
	Odds ratio	95% CI p value						
		LCL	UCL					
Overall	0.73	0.62	0.87	0.001				
<20 20 to <25	0.48 0.61	0.28 0.45	$0.83 \\ 0.82$	0.009 0.001				
25 to <30 30 to <35	$1.01 \\ 0.84$	0.75 0.54	1.36 1.30	0.960 0.439				
35 to <40	0.47 0.78	0.23 0.41	0.95	0.036				
<u> </u>	0.70	0.41	1.4/	0.442				

(b) Increased protein intake								
BMI group	Unadjusted $(n = 2,771^{\rm b})$							
	Odds ratio	95% CI p valu						
		LCL	UCL					
Overall	0.83	0.75	0.92	< 0.001				
<20	0.60	0.43	0.84	0.003				
20 to <25	0.79	0.66	0.94	0.008				
25 to <30	0.95	0.80	1.14	0.609				
30 to <35	0.92	0.72	1.19	0.533				
35 to <40	0.70	0.47	1.04	0.075				
≥40	0.82	0.59	1.14	0.237				

(a) Increased energy intake								
BMI group	Unadjusted $(n = 2,772)$							
	Odds ratio	95% CI p value						
		LCL	UCL					
Overall	0.73	0.62	0.87	0.001				
<20	0.48	0.28	0.83	0.009				
20 to <25	0.61	0.45	0.82	0.001				
25 to <30	1.01	0.75	1.36	0.960				
30 to <35	0.84	0.54	1.30	0.439				
35 to <40	0.47	0.23	0.95	0.036				
≥ 40	0.78	0.41	1.47	0.442				

(b) Increased pr	Increased protein intake				(a) Increased energy intake				
BMI group	BMI group Unadjusted $(n = 2,771^{b})$			BMI group	Unadjusted ($n = 2,772$)				
	Odds ratio	95% CI		p value		Odds ratio	95% CI		p value
		LCL	UCL				LCL	UCL	
Overall <20 20 to <25 25 to <30 30 to <35 35 to <40 ≥ 40	0.83 0.60 0.79 0.95 0.92 0.70 0.82	$\begin{array}{c} 0.75 \\ 0.43 \\ 0.66 \\ \hline 0.80 \\ 0.72 \\ \hline 0.47 \\ 0.59 \end{array}$	$\begin{array}{c} 0.92 \\ 0.84 \\ 0.94 \\ \hline 1.14 \\ 1.19 \\ \hline 1.04 \\ 1.14 \end{array}$	<0.001 0.003 0.008 0.609 0.533 0.075 0.237	Overall <20 20 to <25 25 to <30 30 to <35 35 to <40 ≥ 40	0.73 0.48 0.61 1.01 0.84 0.47 0.78	0.62 0.28 0.45 0.75 0.54 0.23 0.41	0.87 0.83 0.82 1.36 1.30 0.95 1.47	$\begin{array}{c} 0.001 \\ 0.009 \\ 0.001 \\ 0.960 \\ 0.439 \\ 0.036 \\ 0.442 \end{array}$

• The interpretation of interactions in logistic regression models is *complex*.

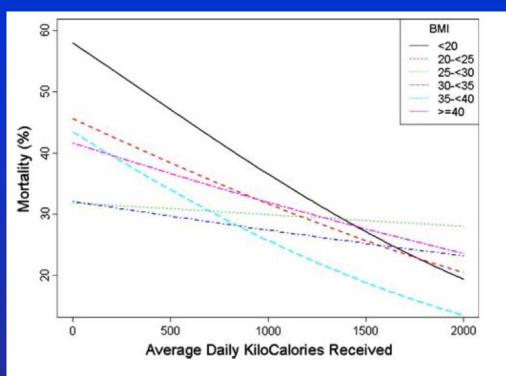
Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, Heyland DK. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. *Intensive Care Med*. 2009 Oct;35(10):1728-37.

(b) Increased pr	Increased protein intake				(a) Increased energy intake				
BMI group	BMI group Unadjusted $(n = 2,771^{b})$				BMI group	Unadjusted ($n = 2,772$)			
	Odds ratio	95% CI		p value		Odds ratio	95% CI		p value
		LCL	UCL				LCL	UCL	
Overall <20 20 to <25 25 to <30 30 to <35 35 to <40 ≥ 40	0.83 0.60 0.79 0.95 0.92 0.70 0.82	$\begin{array}{c} 0.75 \\ 0.43 \\ 0.66 \\ \hline 0.80 \\ 0.72 \\ 0.47 \\ 0.59 \end{array}$	$\begin{array}{c} 0.92 \\ 0.84 \\ 0.94 \\ \hline 1.14 \\ 1.19 \\ 1.04 \\ 1.14 \end{array}$	<0.001 0.003 0.008 0.609 0.533 0.075 0.237	Overall $<\!20$ $20 \text{ to } <\!25$ $25 \text{ to } <\!30$ $30 \text{ to } <\!35$ $35 \text{ to } <\!40$ $\ge\!40$	0.73 0.48 0.61 1.01 0.84 0.47 0.78	0.62 0.28 0.45 0.75 0.54 0.23 0.41	0.87 0.83 0.82 1.36 1.30 0.95 1.47	$\begin{array}{c} 0.001 \\ 0.009 \\ 0.001 \\ 0.960 \\ 0.439 \\ 0.036 \\ 0.442 \end{array}$

• The interpretation of interactions in logistic regression models is *complex*.

• Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not *linear* over all values of the interacting variables.

(b) Increased pr	otein intake				(a) Increased energy intake				
BMI group Unadjusted $(n = 2,771^{\rm b})$			BMI group	Unadjusted ($n = 2,772$)					
	Odds ratio	95% CI		p value		Odds ratio	95% CI		p value
		LCL	UCL				LCL	UCL	
Overall < 20 20 to < 25 25 to < 30 30 to < 35 35 to < 40 ≥ 40	0.83 0.60 0.79 0.95 0.92 0.70 0.82	$\begin{array}{c} 0.75 \\ 0.43 \\ 0.66 \\ 0.80 \\ 0.72 \\ 0.47 \\ 0.59 \end{array}$	$\begin{array}{c} 0.92 \\ 0.84 \\ 0.94 \\ \hline 1.14 \\ 1.19 \\ 1.04 \\ 1.14 \end{array}$	<0.001 0.003 0.008 0.609 0.533 0.075 0.237	Overall $<\!20$ $20 \text{ to } <\!25$ $25 \text{ to } <\!30$ $30 \text{ to } <\!35$ $35 \text{ to } <\!40$ $\ge\!40$	0.73 0.48 0.61 1.01 0.84 0.47 0.78	0.62 0.28 0.45 0.75 0.54 0.23 0.41	0.87 0.83 0.82 1.36 1.30 0.95 1.47	$\begin{array}{c} 0.001 \\ 0.009 \\ 0.001 \\ 0.960 \\ 0.439 \\ 0.036 \\ 0.442 \end{array}$


• The interpretation of interactions in logistic regression models is *complex*.

- Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not *linear* over all values of the interacting variables.
- To properly interpret a logistic interaction term, we need to look at *all levels* of both variables in the interaction term.

(a) Increased en	(a) Increased energy intake								
BMI group	BMI group Unadjusted $(n = 2,772)$								
	Odds ratio	Odds ratio 95% CI p value							
		LCL	UCL						
Overall <20 20 to <25 25 to <30	0.73 0.48 0.61 1.01	0.62 0.28 0.45 0.75	0.87 0.83 0.82 1.36	$0.001 \\ 0.009 \\ 0.001 \\ 0.960$					
$ \begin{array}{r} 25 \text{ to } <50 \\ 30 \text{ to } <35 \\ 35 \text{ to } <40 \\ \underline{\geq}40 \end{array} $	0.84 0.47 0.78	0.54 0.23 0.41	1.30 0.95 1.47	0.439 0.036 0.442					

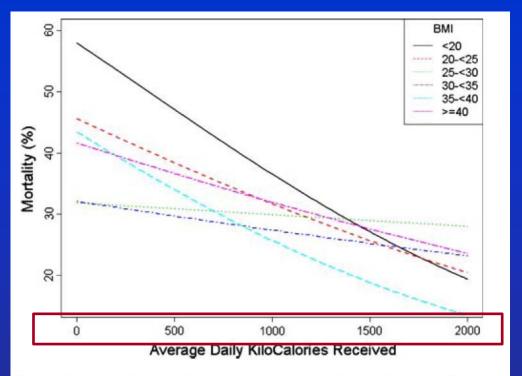
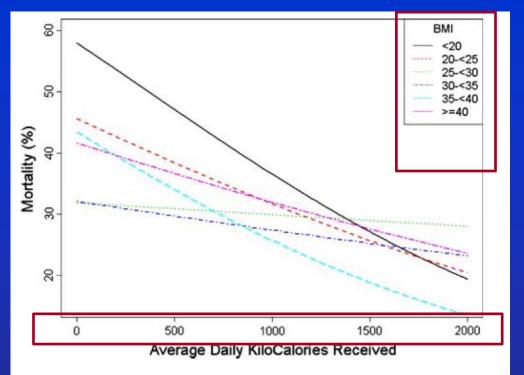

- The interpretation of interactions in logistic regression models is *complex*.
- Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not *linear* over all values of the interacting variables.
- To properly interpret a logistic interaction term, we need to look at *all levels* of both variables in the interaction term.

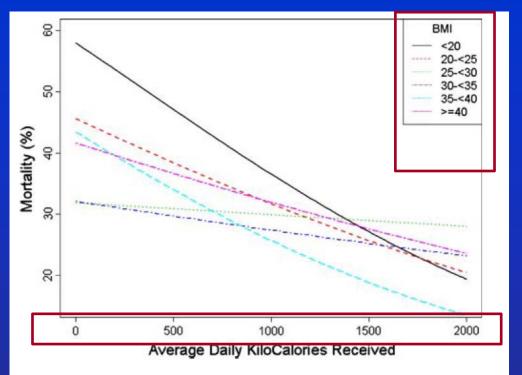
Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index

(a) Increased energy intake									
BMI group Unadjusted $(n = 2,772)$									
	Odds ratio	Odds ratio 95% CI							
		LCL	UCL						
Overall	0.73	0.62	0.87	0.001					
<20	0.48	0.28	0.83	0.009					
20 to <25	0.61	0.45	0.82	0.001					
25 to <30	1.01	0.75	1.36	0.960					
30 to <35	0.84	0.54	1.30	0.439					
35 to <40	0.47	0.23	0.95	0.036					
≥ 40	0.78	0.41	1.47	0.442					


- The interpretation of interactions in logistic regression models is *complex*.
- Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not *linear* over all values of the interacting variables.
- To properly interpret a logistic interaction term, we need to look at *all levels* of both variables in the interaction term.

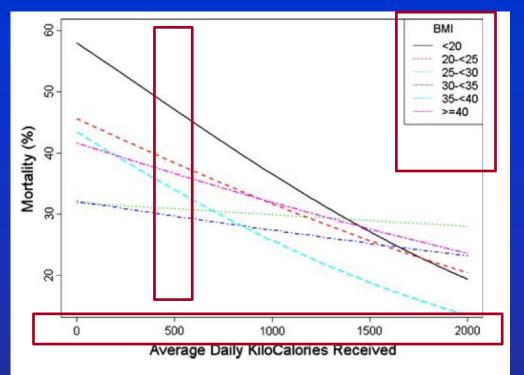
(a) Increased energy intake								
BMI group Unadjusted $(n = 2,772)$								
	Odds ratio 95% CI p value							
		LCL	UCL					
Overall	0.73	0.62	0.87	0.001				
<20	0.48	0.28	0.83	0.009				
20 to <25	0.61	0.45	0.82	0.001				
25 to <30	1.01	0.75	1.36	0.960				
30 to <35	0.84	0.54	1.30	0.439				
35 to <40	0.47	0.23	0.95	0.036				
≥ 40	0.78	0.41	1.47	0.442				

Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index


- The interpretation of interactions in logistic regression models is complex.
- Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not *linear* over all values of the interacting variables.
- To properly interpret a logistic interaction term, we need to look at *all levels* of both variables in the interaction term.
- Figure 1 presents *all levels* of Energy Intake

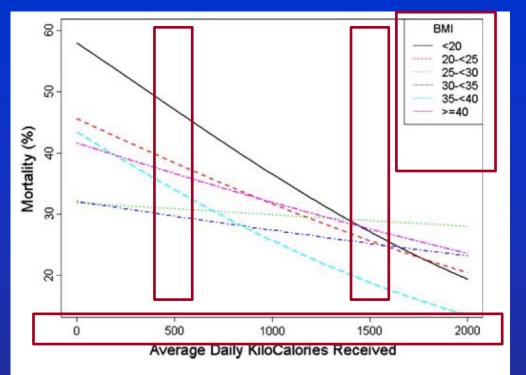
(a) Increased energy intake								
BMI group Unadjusted $(n = 2,772)$								
	Odds ratio	95% CI p value						
		LCL	UCL					
Overall	0.73	0.62	0.87	0.001				
<20 20 to <25	0.48 0.61	0.28 0.45	0.83 0.82	0.009 0.001				
25 to <30 30 to <35	$\begin{array}{c} 1.01 \\ 0.84 \end{array}$	0.75 0.54	1.36 1.30	$0.960 \\ 0.439$				
35 to <40 ≥ 40	0.47 0.78	0.23 0.41	0.95 1.47	$0.036 \\ 0.442$				

Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index


- The interpretation of interactions in logistic regression models is complex.
- Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not *linear* over all values of the interacting variables.
- To properly interpret a logistic interaction term, we need to look at *all levels* of both variables in the interaction term.
- Figure 1 presents all levels of Energy Intake and all classes of BMI.

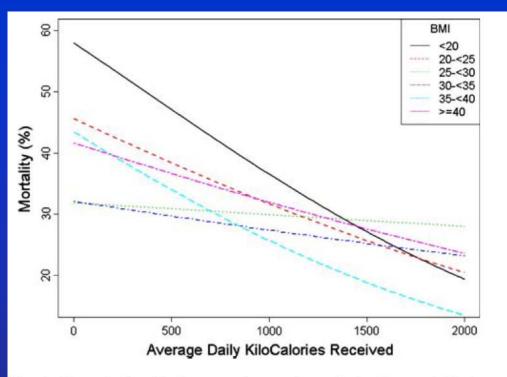
(a) Increased en	nergy intake					
BMI group	Unadjusted $(n = 2,772)$					
	Odds ratio	p value				
		LCL	UCL			
Overall $<\!20$ 20 to $<\!25$ 25 to $<\!30$ 30 to $<\!35$ 35 to $<\!40$ $\ge\!40$	0.73 0.48 0.61 1.01 0.84 0.47 0.78	$\begin{array}{c} 0.62 \\ 0.28 \\ 0.45 \\ 0.75 \\ 0.54 \\ 0.23 \\ 0.41 \end{array}$	$\begin{array}{c} 0.87 \\ 0.83 \\ 0.82 \\ 1.36 \\ 1.30 \\ 0.95 \\ 1.47 \end{array}$	$\begin{array}{c} 0.001 \\ 0.009 \\ 0.001 \\ 0.960 \\ 0.439 \\ 0.036 \\ 0.442 \end{array}$		

Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index


- The interpretation of interactions in logistic regression models is *complex*.
- Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not *linear* over all values of the interacting variables.
- To properly interpret a logistic interaction term, we need to look at *all levels* of both variables in the interaction term.
- Figure 1 presents *all levels* of Energy Intake and *all classes* of BMI.
- Table 5 only presents only *one* level of Energy Intake.

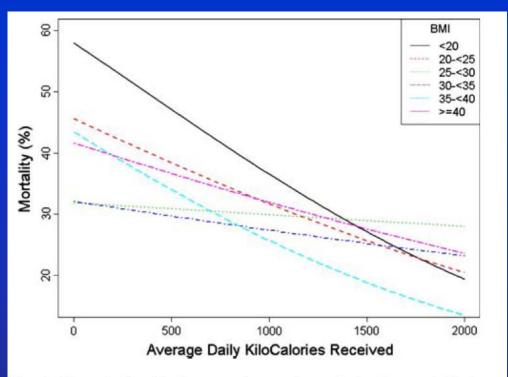
(a) Increased energy intake				
BMI group	Unadjusted $(n = 2,772)$			
	Odds ratio	95% CI		p value
		LCL	UCL	
Overall $<\!20$ 20 to $<\!25$ 25 to $<\!30$ 30 to $<\!35$ 35 to $<\!40$ $\ge\!40$	$\begin{array}{c} 0.73 \\ 0.48 \\ 0.61 \\ 1.01 \\ 0.84 \\ 0.47 \\ 0.78 \end{array}$	$\begin{array}{c} 0.62 \\ 0.28 \\ 0.45 \\ 0.75 \\ 0.54 \\ 0.23 \\ 0.41 \end{array}$	$\begin{array}{c} 0.87 \\ 0.83 \\ 0.82 \\ 1.36 \\ 1.30 \\ 0.95 \\ 1.47 \end{array}$	$\begin{array}{c} 0.001 \\ 0.009 \\ 0.001 \\ 0.960 \\ 0.439 \\ 0.036 \\ 0.442 \end{array}$

Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index

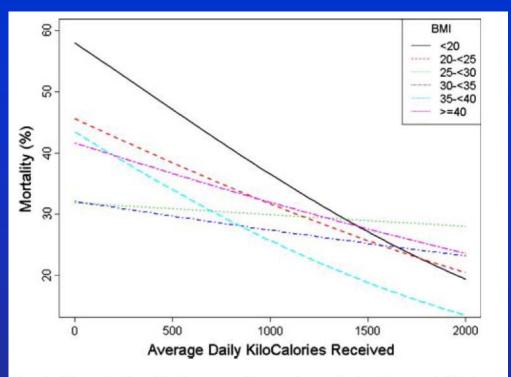

- The interpretation of interactions in logistic regression models is complex.
- Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not *linear* over all values of the interacting variables.
- To properly interpret a logistic interaction term, we need to look at *all levels* of both variables in the interaction term.
- Figure 1 presents *all levels* of Energy Intake and *all classes* of BMI.
- Table 5 only presents only *one* level of Energy Intake.

(a) Increased energy intake								
BMI group	Unadjusted ($n = 2,772$)							
	Odds ratio	p value						
		LCL	UCL					
Overall $<\!20$ $20 \text{ to } <\!25$ $25 \text{ to } <\!30$ $30 \text{ to } <\!35$ $35 \text{ to } <\!40$ $\ge\!40$	0.73 0.48 0.61 1.01 0.84 0.47 0.78	$\begin{array}{c} 0.62 \\ 0.28 \\ 0.45 \\ 0.75 \\ 0.54 \\ 0.23 \\ 0.41 \end{array}$	$\begin{array}{c} 0.87 \\ 0.83 \\ 0.82 \\ 1.36 \\ 1.30 \\ 0.95 \\ 1.47 \end{array}$	$\begin{array}{c} 0.001 \\ 0.009 \\ 0.001 \\ 0.960 \\ 0.439 \\ 0.036 \\ 0.442 \end{array}$				

Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index


- The interpretation of interactions in logistic regression models is *complex*.
- Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not *linear* over all values of the interacting variables.
- To properly interpret a logistic interaction term, we need to look at *all levels* of both variables in the interaction term.
- Figure 1 presents *all levels* of Energy Intake and *all classes* of BMI.
- Table 5 only presents only *one* level of Energy Intake.

(a) Increased energy intake Unadjusted (n = 2,772)BMI group Odds ratio 95% CI p value LCL UCL Overall 0.73 0.62 0.87 0.001 0.480.009 < 200.28 0.83 20 to <250.61 0.45 0.82 0.00125 to <301.01 0.75 1.36 0.960 30 to <35 0.84 0.54 1.30 0.439 35 to <40 0.47 0.23 0.95 0.036 >400.780.41 1.47 0.442


Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index

- The interpretation of interactions in logistic regression models is complex.
- Because logistic regression is conducted in the log-odds scale, the magnitude of effect is not *linear* over all values of the interacting variables.
- To properly interpret a logistic interaction term, we need to look at *all levels* of both variables in the interaction term.
- Figure 1 presents all levels of Energy Intake and all classes of BMI.
- Table 5 only presents only *one* level of Energy Intake.

Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index

(a) Increased energy intake							
BMI group Unadjusted $(n = 2,772)$							
	Odds ratio 95% CI p value						
		LCL	UCL				
Overall	0.73	0.62	0.87	0.001			
<20 20 to <25	$0.48 \\ 0.61$	$0.28 \\ 0.45$	$0.83 \\ 0.82$	$0.009 \\ 0.001$			
25 to <30	1.01	0.75	1.36	0.960			
30 to <35	0.84	0.54	1.30	0.439			
35 to <40	0.47	0.23	0.95	0.036			
≥ 40	0.78	0.41	1.47	0.442			

Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index

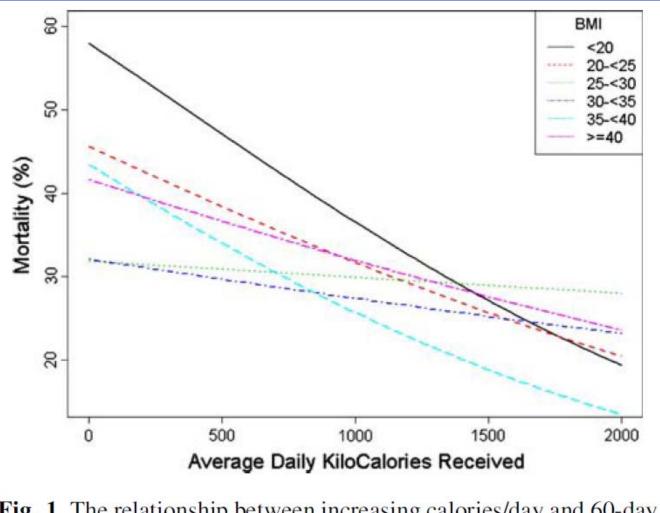


Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index

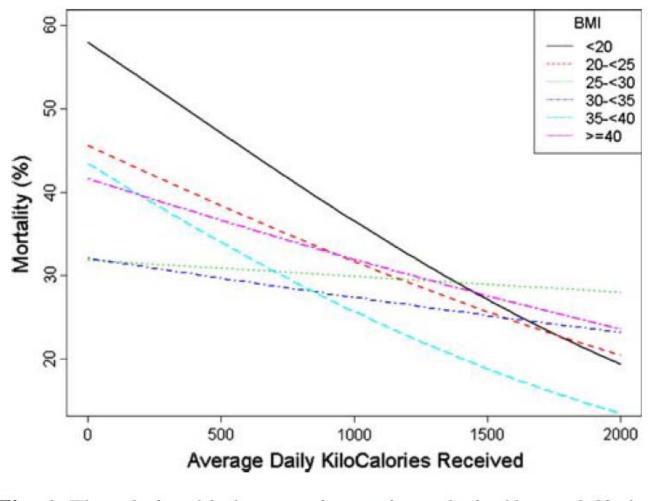


Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index

All lines slope down and to the right (decreased mortality as energy increases), we should conclude that ALL classes of BMI benefit, however some benefit more than others.

- Observational study conducted in 167 ICUs across 21 countries
- 2,772 mechanically ventilated critically ill patients
- Patients with a BMI < 20 demonstrated a significant reduction in mortality with increasing caloric intake (OR 0.52, 95% CI 0.29 to 0.95, P = 0.033) and protein intake (OR 0.60, 95% CI 0.41 to 0.87, P = 0.007)
 - Adjusted for nutrition days, age, admission category, admission dx and APACHE II score.

Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, Heyland DK. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. *Intensive Care Med*. 2009 Oct;35(10):1728-37.

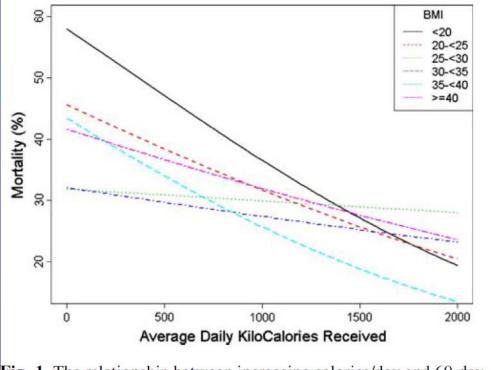
- Observational study conducted in 167 ICUs across 21 countries
- 2,772 mechanically ventilated critically ill patients
- Patients with a BMI < 20 demonstrated a significant reduction in mortality with increasing caloric intake (OR 0.52, 95% CI 0.29 to 0.95, P = 0.033) and protein intake (OR 0.60, 95% CI 0.41 to 0.87, P = 0.007)
 - Adjusted for nutrition days, age, admission category, admission dx and APACHE II score.
- Appropriate interpretation of Figure 1 shows benefit from increased caloric intake is present in all BMI classes!!!

Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, Heyland DK. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. *Intensive Care Med*. 2009 Oct;35(10):1728-37.

- Observational study conducted in 167 ICUs across 21 countries
- 2,772 mechanically ventilated critically ill patients
- Patients with a BMI < 20 demonstrated a significant reduction in mortality with increasing caloric intake (OR 0.52, 95% CI 0.29 to 0.95, P = 0.033) and protein intake (OR 0.60, 95% CI 0.41 to 0.87, P = 0.007)
 - Adjusted for nutrition days, age, admission category, admission dx and APACHE II score.
- Appropriate interpretation of Figure 1 shows benefit from increased caloric intake is present in all BMI classes!!!
- A 'Figure 1' for protein was not presented, but throughout the paper the 'protein' effect mirrors the 'energy effect'.

Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, Heyland DK. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. *Intensive Care Med*. 2009 Oct;35(10):1728-37.

- Observational study conducted in 167 ICUs across 21 countries
- 2,772 mechanically ventilated critically ill patients
- Patients with a BMI < 20 demonstrated a significant reduction in mortality with increasing caloric intake (OR 0.52, 95% CI 0.29 to 0.95, P = 0.033) and protein intake (OR 0.60, 95% CI 0.41 to 0.87, P = 0.007)
 - Adjusted for nutrition days, age, admission category, admission dx and APACHE II score.
- Appropriate interpretation of Figure 1 shows benefit from increased caloric intake is present in all BMI classes!!!
- A 'Figure 1' for protein was not presented, but throughout the paper the 'protein' effect mirrors the 'energy effect'.
 - Most hospital formulas use a fixed ratio of protein to energy.



Observational studies suggest patients may benefit from 'more' protein.

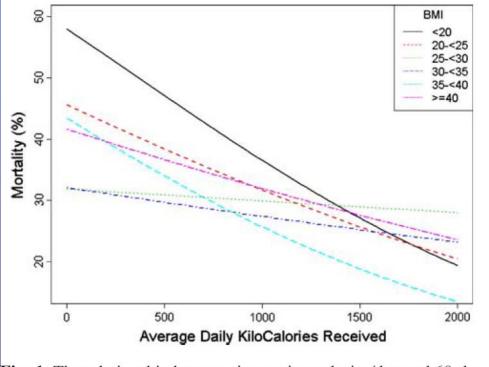

Observational studies suggest patients may benefit from 'more' protein.

Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index

- Observational studies suggest patients may benefit from 'more' protein.
 - This potential benefit is **NOT** restricted to patients with low BMI.

Fig. 1 The relationship between increasing calories/day and 60-day mortality by BMI. *BMI* body mass index

- Observational studies suggest patients may benefit from 'more' protein.
 - This potential benefit is **NOT** restricted to patients with low BMI.
- Daily protein targets between 1.2–2.0 g/kg, are reasonable.

- Observational studies suggest patients may benefit from 'more' protein.
 - This potential benefit is **NOT** restricted to patients with low BMI.
- Daily protein targets between 1.2–2.0 g/kg, are reasonable.
 - Some form of adjustment to IBW at a BMI threshold is also reasonable.

- Observational studies suggest patients may benefit from 'more' protein.
 - This potential benefit is NOT restricted to patients with low BMI.
- Daily protein targets between 1.2–2.0 g/kg, are reasonable.
 - Some form of adjustment to IBW at a BMI threshold is also reasonable.
- Should I supplement if the patient does not achieve 1.2 g/kg?

- Observational studies suggest patients may benefit from 'more' protein.
 - This potential benefit is NOT restricted to patients with low BMI.
- Daily protein targets between 1.2–2.0 g/kg, are reasonable.
 - Some form of adjustment to IBW at a BMI threshold is also reasonable.
- Should I supplement if the patient does not achieve 1.2 g/kg?
 - No compelling evidence establishes 1.2 g/kg as the minimal required dose.

- Observational studies suggest patients may benefit from 'more' protein.
 - This potential benefit is NOT restricted to patients with low BMI.
- Daily protein targets between 1.2–2.0 g/kg, are reasonable.
 - Some form of adjustment to IBW at a BMI threshold is also reasonable.
- Should I supplement if the patient does not achieve 1.2 g/kg?
 - No compelling evidence establishes 1.2 g/kg as the minimal required dose.
- Should I supplement everyone to achieve 2.0 g/kg?

- Observational studies suggest patients may benefit from 'more' protein.
 - This potential benefit is NOT restricted to patients with low BMI.
- Daily protein targets between 1.2–2.0 g/kg, are reasonable.
 - Some form of adjustment to IBW at a BMI threshold is also reasonable.
- Should I supplement if the patient does not achieve 1.2 g/kg?
 - No compelling evidence establishes 1.2 g/kg as the minimal required dose.
- Should I supplement everyone to achieve 2.0 g/kg?
 - We just completed a 474 patient RCT addressing this question. Formal sub-group analysis identified a specific population with reduced mortality, however, duplication is required before clinical recommendations can be made.

- Observational studies suggest patients may benefit from 'more' protein.
 - This potential benefit is NOT restricted to patients with low BMI.
- Daily protein targets between 1.2–2.0 g/kg, are reasonable.
 - Some form of adjustment to IBW at a BMI threshold is also reasonable.
- Should I supplement if the patient does not achieve 1.2 g/kg?
 - No compelling evidence establishes 1.2 g/kg as the minimal required dose.
- Should I supplement everyone to achieve 2.0 g/kg?
 - We just completed a 474 patient RCT addressing this question. Formal sub-group analysis identified a specific population with reduced mortality, however, duplication is required before clinical recommendations can be made.
 - Patients with unstable renal function at ICU admission *may not* benefit from higher-end protein dosing (2.0 g/kg).

- Observational studies suggest patients may benefit from 'more' protein.
 - This potential benefit is NOT restricted to patients with low BMI.
- Daily protein targets between 1.2–2.0 g/kg, are reasonable.
 - Some form of adjustment to IBW at a BMI threshold is also reasonable.
- Should I supplement if the patient does not achieve 1.2 g/kg?
 - No compelling evidence establishes 1.2 g/kg as the minimal required dose.
- Should I supplement everyone to achieve 2.0 g/kg?
 - We just completed a 474 patient RCT addressing this question. Formal sub-group analysis identified a specific population with reduced mortality, however, duplication is required before clinical recommendations can be made.
 - Patients with unstable renal function at ICU admission *may not* benefit from higher-end protein dosing (2.0 g/kg).

Protein dosing is a hot topic and may lead to reduced mortality. We need more well done multi-centre RCTs focussed on patient oriented outcomes to refine our target range.

Logistic regression Log likelihood = -78.74193					r of obs = i2(4) = > chi2 = o R2 =	= 0.0000
у	Coef.	Std. Err.	Z	₽> z	[95% Coni	. Interval]
f h fh cv1 _cons	2.996118 2.390911 -2.047755 .196476 -11.86075	.7521524 .6608498 .8807989 .0328518 1.895828	3.98 3.62 -2.32 5.98 -6.26	0.000 0.000 0.020 0.000 0.000	1.521926 1.09567 -3.774089 .1320876 -15.5765	4.470309 3.686153 3214213 .2608644 -8.144991

Logistic regres Log likelihood	LR ch	> chi2 =	= 200 = 106.10 = 0.0000 = 0.4025			
у	Coef.	Std. Err.	Z	P> z	[95% Con:	. Interval]
f h fh cv1 _cons	2.996118 2.390911 -2.047755 .196476 -11.86075	.7521524 .6608498 .8807989 .0328518 1.895828	3.98 3.62 -2.32 5.98 -6.26	0.000 0.000 0.020 0.000 0.000	1.521926 1.09567 -3.774089 .1320876 -15.5765	4.470309 3.686153 3214213 .2608644 -8.144991

The above is a simple logistic regression model where f = 1 or 0,

Logistic regression Log likelihood = -78.74193				LR ch	> chi2 =	0.0000
у	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
f h fh cv1 _cons	2.996118 2.390911 -2.047755 .196476 -11.86075	.7521524 .6608498 .8807989 .0328518 1.895828	3.98 3.62 -2.32 5.98 -6.26	0.000 0.000 0.020 0.000 0.000	1.521926 1.09567 -3.774089 .1320876 -15.5765	4.470309 3.686153 3214213 .2608644 -8.144991

The above is a simple logistic regression model where f = 1 or 0, h = 1 or 0,

Logistic regres Log likelihood	LR ch	> chi2 =	= 200 = 106.10 = 0.0000 = 0.4025			
у	Coef.	Std. Err.	Z	P> z	[95% Con:	. Interval]
f h fh cv1 _cons	2.996118 2.390911 -2.047755 .196476 -11.86075	.7521524 .6608498 .8807989 .0328518 1.895828	3.98 3.62 -2.32 5.98 -6.26	0.000 0.000 0.020 0.000 0.000	1.521926 1.09567 -3.774089 .1320876 -15.5765	4.470309 3.686153 3214213 .2608644 -8.144991

The above is a simple logistic regression model where f = 1 or 0, h = 1 or 0, fh = interaction

Logistic regression Log likelihood = -78.74193				LR ch	> chi2 =	0.0000
у	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
cv1	2.996118 2.390911 -2.047755 .196476 -11.86075	.7521524 .6608498 .8807989 .0328518 1.895828	3.98 3.62 -2.32 5.98 -6.26	0.000 0.000 0.020 0.000 0.000	1.521926 1.09567 -3.774089 .1320876 -15.5765	4.470309 3.686153 3214213 .2608644 -8.144991

The above is a simple logistic regression model where f = 1 or 0, h = 1 or 0, fh = interaction, and cv1 = a continuous variable.

Logistic regression Log likelihood = -78.74193				> chi2	= 200 = 106.10 = 0.0000 = 0.4025
y Coef.	Std. Err.	Z	P> z	[95% Con	f. Interval]
f 2.996118 h 2.390911 fh -2.047755 cv1 .196476 _cons -11.86075	.7521524 .6608498 .8807989 .0328518 1.895828	3.98 3.62 -2.32 5.98 -6.26	0.000 0.000 0.020 0.000 0.000	1.521926 1.09567 -3.774089 .1320876 -15.5765	4.470309 3.686153 3214213 .2608644 -8.144991

The above is a simple logistic regression model where f = 1 or 0, h = 1 or 0, fh = interaction, and cv1 = a continuous variable.

If this were *linear regression*, we could simply interpret the regression coefficient of the interaction term.

Logistic regression Log likelihood = -78.74193					> chi2	= 200 = 106.10 = 0.0000 = 0.4025
у	Coef.	Std. Err.	Z	P> z	[95% Con	f. Interval]
f h fh cv1 _cons	2.996118 2.390911 -2.047755 .196476 -11.86075	.7521524 .6608498 .8807989 .0328518 1.895828	3.98 3.62 -2.32 5.98 -6.26	0.000 0.000 0.020 0.000 0.000	1.521926 1.09567 -3.774089 .1320876 -15.5765	3.686153 3214213 .2608644

The above is a simple logistic regression model where f = 1 or 0, h = 1 or 0, fh = interaction, and cv1 = a continuous variable.

If this were *linear regression*, we could simply interpret the regression coefficient of the interaction term.

Logistic regression is conducted in the log-odds scale. The interaction is actually *multiplicative* (not simply 'additive' as in linear regression). We must plot some graphs.

To understand how the effect of **h** is modified by interaction with **f** :

To understand how the effect of **h** is modified by interaction with **f** :

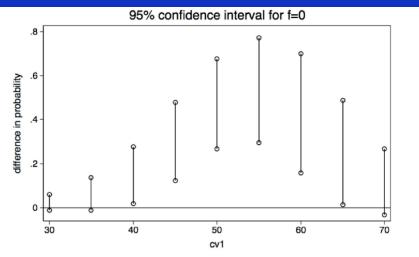


Figure A: effect of h on f=0 for all values of cv1

To understand how the effect of **h** is modified by interaction with **f** :

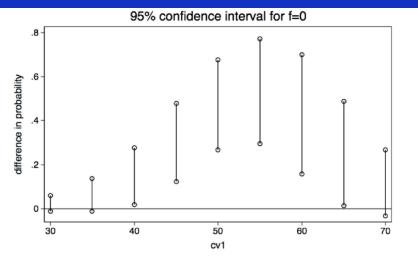


Figure A: effect of h on f=0 for all values of cv1

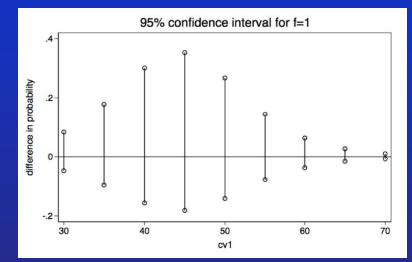


Figure B: effect of h on f=1 for all values of cv1

To understand how the effect of **h** is modified by interaction with **f** :

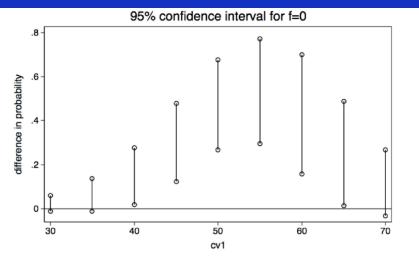


Figure A: effect of h on f=0 for all values of cv1

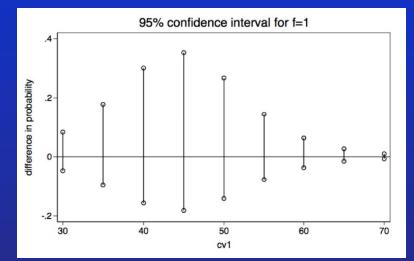
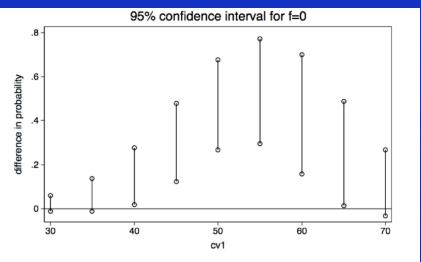



Figure B: effect of h on f=1 for all values of cv1

The magnitude of the interaction may change drastically at each value of the covariate *and* at each level of each interaction term.

To understand how the effect of **h** is modified by interaction with **f** :

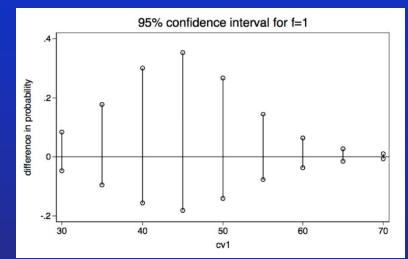


Figure B: effect of h on f=1 for all values of cv1

The magnitude of the interaction may change drastically at each value of the covariate *and* at each level of each interaction term.

Interpretation requires visual inspection of all levels of covariates and all levels of the interacting terms.