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Purpose: To compare the predictive performance of a series of logistic regression models

(LMs) to a corresponding series of back-propagation artificial neural networks (ANNs).

Location: A 30 bed adult general intensive care unit (ICU) that serves a 600-bed tertiary

care teaching hospital.

Patients: Consecutive patients with a duration of ICU stay greater than 72 hours.

Outcome: ICU-based mortality.

Methods: Data were collected on day one and day three of stay using a modified

APACHE III methodology. A randomly generated 811 patient developmental database

was used to build models using day one data (LM1 and ANN1), day three data (LM2 and

ANN2) and a combination of day one and day three data (LMOT and ANNOT). Primary

comparisons were based on area under the receiver operating curves (aROC) as measured

on a 338 patient validation database. Outcome predictions were also obtained from

experienced ICU clinicians on a subset of patients.

Results: Of the 3,728 patients admitted to the ICU during the period from March 1, 1994

through February 28, 1996, 1,181 qualified for entry into the study. There was no

significant difference between LM and ANN models developed using day one data. The

ANN developed using day three data performed significantly better than the

corresponding LM (aROC LM2 0.7158 vs. ANN2 0.7845, p=0.0355). The time

dependent ANN model also performed significantly better than the corresponding LM

(aROC LMOT 0.7342 vs. ANNOT 0.8095, p=0.0140).

The predictions obtained from ICU consultants (aROC 0.8210) discriminated

significantly better than LMOT (aROC 0.6814, p=0.0015) but there was no difference

between the consultants and ANNOT (aROC 0.8094, p=0.7684).

Conclusion: Although the 1,181 patients who became eligible for entry into this study

represented only 32 percent of all ICU admissions, they accounted for 80 percent of the

resources (costs) expended. ANNs demonstrated significantly better predictive

performance in this clinically important group of patients. Four potential reasons are

discussed: 1) ANNs are insensitive to problems associated with multicollinearity; 2)

ANNs place importance on novel predictors; 3) ANNs automatically model nonlinear

relationships and; 4) ANNs implicitly detect all possible interaction terms.
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1. Introduction
In North America, the intensive care unit (ICU) accounts for seven percent of all

hospital beds, 15 to 20 percent of all hospital expenditures, and approximately one

percent of the Gross National Product.1 Because the demand for intensive care is growing

and resources are increasingly constrained,2 it is becoming even more important to make

effective decisions with respect to management practices, utilization, and even individual

therapy received in the ICU. It has long been recognized in the field of intensive care

medicine that analytical epidemiology can play a major role in providing tools for ICU-

level management and decision support.3,4,5,6

Predictive modeling can provide an estimate of the risk of mortality faced by a

patient upon entry into the ICU. This risk of mortality, commonly expressed as a

severity-of-illness score, can serve to support quality assurance activities, resource

allocation, and the evaluation of novel therapies.7,8,9 Severity-of-illness scores usually

perform well when used to predict the expected overall mortality experience of an entire

ICU population. Research has shown however, that as a patient’s length of stay in the

ICU increases, the accuracy of admission scores decreases drastically. Severity-of-illness

scores also consistently fall short of clinical usefulness when used to predict mortality in

individual patients.8,10,11

 Some researchers have suggested that gaining a better understanding of the

complex patterns associated with mortality prediction in the ICU will require the use of

novel mathematical approaches, such as set theory or fuzzy logic.12,13 Artificial neural

networks (ANNs) represent an alternative approach to modeling complexity in the ICU.

ANNs are a group of techniques developed by cognitive scientists to model the human

brain's methods of learning, have also been shown to be useful in situations such as the

ICU where the relationships between variables and outcomes are complex.14

In the engineering disciplines of image processing, speech recognition and natural

language processing, neural network techniques have demonstrated the ability to

outperform classical statistical methods.15 In the domain of artificial intelligence (AI),

research has shown that neural networks can easily solve many complex problems which

conventional AI systems find difficult or impossible to solve.16 In medicine, neural
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networks have outperformed clinicians on the diagnosis of hepatic masses, pulmonary

emboli and breast tumors.17, 18, 19 Although studies in the medical literature have

compared neural networks against other image processing techniques and against

clinicians, to date few published studies have used objective statistical measures to

compare the ability of ANNs to predict patient outcomes against currently accepted

analytical techniques.

The purpose of this project was to compare the performance of artificial neural

networks with that of multivariate logistic regression in predicting mortality in patients

admitted to the intensive care unit. The potential clinical utility of this novel method was

also evaluated by comparing the predictions of the artificial neural network with those of

senior clinicians. In today's arena of advancing medical technology and retreating

budgets, an improved decision support tool would be invaluable to clinicians, unit

managers and ultimately, to the patients themselves.
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2. Literature Review

2.1 Mortality Prediction in the Intensive Care Unit

 Many different scoring systems are used to predict the risk of mortality

experienced by adult ICU patients. The most widely used and well validated include the

Acute Physiology and Chronic Health Evaluation (APACHE), the Mortality Probability

Models (MPMs) and the Simplified Acute Physiology Score (SAPS).7,20,21 While the

specific methodology for data collection and risk estimation for each of these systems

differ markedly, there are some striking basic similarities. They all combine certain

measures of physiological status and/or treatment modalities with pre-existing risk

factors to produce a logistic regression-based measure of risk of mortality. Independent

validation studies comparing risk predictions from these three systems have consistently

failed to demonstrate any notable differences in performance.

2.2 The APACHE Scoring System

The original APACHE scoring system, which utilized information readily

available from the medical record, was first introduced in 1981.22 In subsequent studies,

it was reported to be a reliable and valid classification system for critically ill

patients.23,24 An excellent detailed overview of its early development is available

elsewhere.25

The APACHE scoring system was first developed on a database of 804

consecutive ICU admissions. The study protocol called for recording 34 separate

physiological variables during the first 36 hours of ICU admission. A score between zero

and four was assigned to each physiologic value based on its deviation from normal and

these individual scores were then summed to produce the overall patient score. The

selection of the 34 physiologic variables and the score attributed to each was determined

by expert consensus.22

2.2.1 APACHE II

Driven by the need to develop and validate a scoring system on a representative

database, the development of APACHE II was undertaken.26 APACHE II was developed

and validated on a database of 5,815 ICU admissions from 13 hospitals and reduced the
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number of required admission acute physiology score (APS) variables from 34 to12 by

dropping infrequently measured variables.

The twelve physiologic variables that comprise the APACHE II model are:

temperature, mean arterial pressure, heart rate, respiratory rate, oxygenation, arterial pH,

serum sodium, serum potassium, serum creatinine, hematocrit, white blood count, and the

Glasgow coma scale score.  For each variable, ‘points’ were assigned based on the worst

value (the value deviating farthest from normal) recorded over the first 24 hours of ICU

admission. Individual variable points were summed to form the APS component of the

APACHE II score.

The complete APACHE II score also included points awarded for age and for the

chronic health evaluation (CHE) variables. The CHE awarded points for chronic liver,

cardiovascular, respiratory, renal and immunological failure. The APS, age and CHE

points were then summed and offered to a logistic regression model to calculate a

predicted risk of mortality. The points awarded in the APS, age and CHE components of

the APACHE II model were based on an expert consensus process.

The reliability of information abstracted from medical records for APACHE II

has been extensively measured.27 Abstraction of the APS component was found to have

an intraclass correlation coefficient (ICC) of 0.90. The abstraction of age information was

found to have an ICC of 0.99 and the ICC for the reproducibility of the CHE component

was 0.66. The investigators concluded that the collection of information for the

calculation of the APACHE II score was highly reliable.

APACHE II has been used to compare utilization rates and outcomes of critical

care services throughout North America, Hong Kong, Switzerland, New Zealand, Japan

and most recently, Tunisia.28,29,30,31,32,33 In 1995 an extensive evaluation was undertaken

comparing 1,724 consecutive admissions at two Canadian ICU’s with data collected on

4,087 consecutive admissions in 13 ICU’s based in the United States.34 In this study, both

the overall mortality experience (24.8% vs. 22.1%, p=0.028) and the average admission

APACHE II score (16.5±0.2 vs. 14.8±0.1, p=0.0001) were significantly higher in the

Canadian ICUs. Furthermore, by using a graphical technique, the authors demonstrated

that when observed mortality rates were controlled for severity of illness using APACHE

II scores, no observable difference existed between the Canadian and American ICU’s. In
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this study, the area under the receiver operating characteristic (aROC) curve for the

APACHE II model in the Canadian ICUs was 0.86. The ROC curve is simply a graph of

the sensitivity vs. (1-specificity) for each possible cutoff  value. The area under the ROC

curve serves as a useful measure of discrimination. It represents the proportion of all

possible pairs of outcomes in which the predicted risk of mortality for the patient who

actually died is higher than the predicted risk of mortality for the patient who lived.35

Although the APACHE II system has been used extensively for ‘benchmarking’

performance between countries, some reports have suggested that both calibration and

discrimination of APACHE II decreases when applied to patient populations that were

not included in the original development project.33,36

2.2.2 APACHE III

The development of the APACHE III prognostic scoring system is outlined in

detail in a comprehensive series of articles.1,37,38,39,40,41,42 It was developed from an ICU

database of 17,457 consecutive patients collected from 40 hospitals throughout the

United States. Of these 40 hospitals, 26 volunteered to participate as a result of a random

selection process and 14 non-randomly selected hospitals volunteered. The APACHE III

database is considered to be representative of American ICUs.

In addition to the original 12 variables of the APACHE II, the APS component of

the APACHE III contained five additional physiological variables: blood urea nitrogen

(BUN), urine output, serum albumin, bilirubin, and glucose. Overall explanatory power

of the APACHE III also improved when the following interactions were considered:

serum pH with PaCO2, serum creatinine with urine output, and respiratory rate with

ventilator use.

The comorbid disease states considered as important predictors of outcome by

APACHE III included: acquired immunodeficiency syndrome, hepatic failure,

lymphoma, solid tumor with metastasis, leukemia/multiple myeloma,

immunocompromise, and cirrhosis.9 Of all the comorbid chronic health states, the only

ones to meet the statistical requirements for inclusion in APACHE III were those that

influence the patient's immunologic status.

The overall predictive power of APACHE III logistic regression risk estimates

developed on the data obtained during the first day of ICU stay is evidenced by the total
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model r2 of 0.41 and area under the ROC curve of 0.90. Overall correct classification on

the first day was 88.2 percent. These values were reported as being an improvement over

both the area under the ROC curve (0.85) and the overall correct classification rate

(85.5%) of APACHE II.9

In a recent study looking at 200 non-selected head trauma patients conducted in

China, the discrimination of APACHE III, as measured by area under the ROC curve,

was reported to be 0.90; whereas that of APACHE II was 0.84.43 In this relatively small

study, no statistically significant difference was evident between the performance of

APACHE II and APACHE III. However, a large independent evaluation of APACHE III

conducted on 14,745 consecutive admissions to 137 ICUs throughout Europe and North

America, reported that APACHE III had significantly improved predictive performance

over APACHE II (aROC APACHE III 0.866 vs. aROC APACHE II 0.853, p<0.0001).44

In 1996, an evaluation of APACHE III was undertaken in a Brazilian patient

population.45 In this article, the APACHE III predicted mortality rate of 20 percent was

significantly lower than the actual 34 percent mortality rate reported in the 1,734 patient

cohort (p<0.0001). The area under the ROC curve was reported as 0.82.

Further validation of the APACHE III score was undertaken in a consecutive

sample of 37,668 ICU admissions accumulated from 1993 to 1996 from 285 non-

randomly selected ICUs located in 161 American hospitals.46 This study reported that

although no significant difference existed between the aggregate observed mortality rate

and that predicted by the APACHE III model (12.35% vs. 12.27%, p=0.541), the

Hosmer-Lemeshow goodness of fit (H-L gof) test displayed a significant lack of

calibration (χ2=48.71,8df(sic);p<0.0001). The aROC was reported as being 0.89, which

was considered good for a validation study.

Most recently, in order to improve predictive performance in a cohort of Spanish

patients, the logistic regression coefficients for the APACHE III equations were

recalculated.47 By contacting the directors of all ICUs in the Spanish National Health

Service hospital network, data were collected on 10,929 patients from 86 participating

ICUs. These data were abstracted from patient charts using the APACHE III
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methodology and the logistic regression coefficients for the APACHE III risk prediction

model were recalculated based on this Spain-specific database.

The area under the ROC curve for the recalibrated APACHE III equations was

reported as 0.83 on the developmental database and 0.82 in the ‘cross-validated model’.

Although the Hosmer-Lemeshow goodness of fit statistic was reported as being non-

significant [χ2=12.27,10df(sic);p=NS] on the developmental database, no goodness of fit

tests were performed on the cross-validated model.48

2.3 The Mortality Probability Model (MPM) Scoring System

In 1985, a multiple logistic regression (MLR) model was developed to predict

outcome in ICU patients based on 755 consecutive admissions to the medical/surgical

ICUs at Baystate Medical Center, Springfield, Massachusetts.49 The major objective of

developing this MLR was to create a severity-of-illness score using an objective

methodology to assign variable weights.

A total of 137 background, condition, and treatment variables were collected at

admission to the ICU. Seventy-five of these variables were recollected at 24 and 48 hours

from patients still in the ICU. Tests of association of each study variable with vital status

at hospital discharge were performed using the Student’s t-test with continuous variables,

and the Chi-square test of independence with categorical variables.

Of the 137 admission variables assessed, the only ones that were significantly

related to outcome using univariate analysis were: age, systolic blood pressure, heart rate,

number of organ failures, source of admission, presence of infection, cardiopulmonary

resuscitation before admission, type of admission (elective/emergency), PaO2,

bicarbonate, serum creatinine and level of consciousness (coma or deep stupor vs. other).

A forward stepwise process was then used to develop a multivariate model.

The multivariate model demonstrated good fit (H-L gof p=0.3871). Graphical

representations of the ROC curves were presented but the area under the curves was not

calculated. The performance of this initial model was not evaluated on a validation

database.

Subsequently, the results of a more extensive undertaking were published.50 In

this second paper by the same investigators, data were presented on 2,783 admissions to
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the Baystate Medical Center and four distinct mortality probability models (MPMs) were

created. The first model was based on variables collected at the time of admission to the

ICU (MPM0) and two subsequent models were based on data available at 24 hours

(MPM24) and 48 hours (MPM48) of stay in the ICU. The fourth model, termed MPM over

time (MPMOT), was developed using only three independent variables: X1=pred(MPMO),

X2=pred(MPM0)-pred(MPM24), and X3=pred(MPM24)-pred(MPM48) where pred(MPM)

represents the predicted probability of mortality from a particular MPM model. All

models displayed good calibration based on the Hosmer-Lemeshow goodness of fit.

Formal measures of discrimination were not reported and the performance of the models

was not evaluated on an independent validation database.

2.3.1 MPM II

The development of the second-generation mortality probability model (MPM II)

was based on a database of 19,124 patients from 137 medical/surgical ICUs in 12

different countries.51 Of the 19,124 available patients, 12,610 were used to develop the

model and 6,514 were retained in a separate independent database for model validation.

In this paper, two unique MPM II models were created: MPM II0 was based on

information available at entry to the ICU and MPM II24 was based on information

abstracted after 24 hours of stay. For both models, inclusion of main effects in the

multivariate model was based on a univariate probability less than 0.10. All possible two-

way interactions were investigated and retained in the model if: 1) they demonstrated

statistical significance (p<0.05) in the full model; 2) the combination of factors from the

main effects contributing to the model (a AND b) was present in at least one percent of

the population; and 3) the interaction satisfied the requirement of ‘clinical plausibility’.

No two-way interactions satisfied all three criteria for either MPM II0 or MPM II24.

MPM II0 contained 15 main effect terms and exhibited good performance on both

the developmental and validation database (H-L gof p=0.62, aROC=0.84 developmental,

H-L gof p=0.33, aROC=0.82 validation). The MPM II24 contained 13 variables and also

performed well (H-L gof p=0.76, aROC=0.84 developmental, H-L gof p=0.23,

aROC=0.84 validation).

In a separate study, two additional MPM II models were developed: MPM II48

required information available 48 hours and MPM II72 required information available 72
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hours post-admission. This study was based on a database of 6,290 patients admitted to

six adult medical and surgical ICUs in Massachusetts and New York State. Of the total

6,290 available patients, 3,023 had complete data available at 48 hours and 2,233 had

complete data available at 72 hours post-admission.52

Both the MPM II48 and the MPM II72 contained the same 13 variables and

coefficients as the MPM II24. Only the intercept term was recalculated to reflect “the

increasing probability of mortality with increasing length of stay in the ICU”.52 Both the

MPM II48 (H-L gof p=0.31, aROC=0.81 developmental, H-L gof p=0.59, aROC=0.80

validation) and the MPM II72 (H-L gof p=0.31, aROC=0.79 developmental, H-L gof

p=0.41, aROC=0.75 validation) displayed good performance.

In 1994, the performance of MPM II0 was assessed on an independent database

composed of 8,724 admissions to 26 ICUs in Britain and Ireland.36 When applied to this

database, MPM II0 displayed poor fit (H-L gof p<0.0001) with a reported area under the

ROC curve of 0.74. Evaluation in a smaller 1,325 patient database from three Tunisian

ICUs revealed that both MPM II0 and MPM II24 displayed poor fit (H-L gof p<0.001 for

both).33 The area under the ROC curve was reported as 0.85 for MPM II0 and 0.88 for

MPM II24 in this database. In a 1998 publication, MPM II0 also displayed poor fit (H-L

gof p<0.0001) when applied to an independent database of 10,027 evaluable patients

collected from consecutive admissions to 89 ICUs in 13 European countries.53 The area

under the ROC curve in this validation study was 0.78 with a standard error of 0.006.

2.4 Simplified Acute Physiology Score (SAPS)

The original SAPS scoring system was developed as an extension of the first

APACHE model. 54 The objective of SAPS was to simplify the APS portion of APACHE

by using expert consensus to reduce the number of variables that would be abstracted

from each patient chart. The SAPS variables were collected using the same methodology

developed by APACHE (worst value over first 24 hours) and SAPS used a similar

subjective point allocation scheme as APACHE. To produce the SAPS score, points were

allocated for each variable’s deviation from normal and summed. The original SAPS did

not attempt to produce a prediction of mortality for a given score and thus was simply a

‘scoring’ system composed of 13 physiologic variables plus age.
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2.4.1 SAPS II

The second generation SAPS model (SAPS II) was developed on a 13,152 patient

database collected from 137 medical/surgical ICUs in 12 countries.55 This database was

randomly divided into developmental (65 percent) and validation (35 percent) data sets.

SAPS II considered all the original variables comprising SAPS for eligibility plus

additional demographic and physiologic variables. Inclusion in the final score was

considered if a variable demonstrated a significant univariate relationship with mortality

or contributed towards improved fit in the final model. The final SAPS II model

contained 17 variables: 12 physiological variables (temperature, heart rate, blood

pressure, white blood cell count, bilirubin, serum sodium, serum potassium, serum

bicarbonate, blood urea nitrogen, urine output, oxygenation and a measure of

neurological status) and 5 demographic variables (age, type of admission, presence of

AIDS, presence of a hematologic malignancy, and presence of metastatic cancer).

Points awarded to each variable range were determined using an objective

approach and summed to calculate the SAPS II score. To translate the SAPS II score into

a predicted probability of mortality, the entire score would be entered into the SAPS II

logistic equation. Although the SAPS II predictive equation contains only the SAPS II

score, it demonstrated good performance in both the developmental (H-L gof p=0.88,

aROC=0.88) and validation (H-L gof p=0.10, aROC=0.86) data sets.

The performance of SAPS II has been evaluated in independent data sets. In a

consecutive sample of 1,325 patients from three Tunisian ICUs, SAPS II was shown to

have poor fit (H-L gof p<0.001) but good discrimination (aROC=0.84).33 In a larger

study involving 10,027 patients collected from 89 ICUs in 13 European countries, SAPS

II demonstrated poor fit (H-L gof p<0.001) with an area under the ROC curve of 0.82 and

a standard error of 0.005. In this study, the area under the ROC curve for SAPS II was

found to be significantly better than the area reported for the MPM II0 model, which was

evaluated in the same study (0.82±0.005 vs. 0.79±0.006, p<0.001).53

The performance of SAPS II has also been evaluated in an intermediate care unit.

The requirement for intermediate care is defined by patients who are not currently

suffering from a life threatening condition, who are not currently receiving invasive

interventions but who do require intensive monitoring. Although SAPS II was not
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developed in intermediate care units, a large portion of the original SAPS II development

database contained patients who satisfied the requirements for intermediate care. In this

study of 561 consecutive admissions to a French intermediate care unit, 433 patients

qualified for SAPS II scoring. Based on these 433 patients, SAPS II displayed good

calibration (H-L gof p>0.5) and discrimination (aROC=0.85±0.04).56

2.5 Day of Severity-of-Illness Scoring

2.5.1 APACHE

The original intent of the APACHE scoring system was to use data available

shortly after admission to the ICU to aid in assessment of a patient’s risk of mortality. In

subsequent research, it was recognized that between the first 24 to 48 hours after

admission to the ICU, severely ill patients often develop serious sequelae such as line

infections, ventilator associated pneumonia, sepsis, refractory shock and/or acute

respiratory distress syndrome. The development of these complications significantly

alters a patient’s risk of mortality and has been shown to be more strongly associated

with outcomes than are the APACHE II admission scores.11

In an attempt to understand the performance of the APACHE II scoring system in

patients with lengths of stay greater than 72 hours, a study of 110 consecutive patients

demonstrated that the predictive accuracy of the APACHE II system decreased with the

length of time the patient stayed in the ICU.57 Furthermore, it was also shown that if

APACHE II scores were recalculated on each day of stay and scores remained high in the

face of continued maximal intervention, fatal outcomes could be accurately predicted.13

In 1994, the methodology of the APACHE III risk prediction system was formally

extended to incorporate repeated physiologic measures over time in order to improve its

predictive accuracy.58 The APACHE III database, which included 17,440 patients

collected from consecutive admissions to 42 ICUs at 40 different hospitals, was used to

develop a unique predictive equation for each day the patient remained in the ICU.

The basic form of the terms entered into these logistic regression equations was:

Daily Risk = (APS day 1) + (APS current day) + (change in APS since yesterday). The

equations also contained the following non time-dependent variables: indication for ICU

admission, location and length of treatment before ICU admission, patient’s age and CHE
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score. These variables were not selected for entry into the model based on objective

statistical criteria, but were pre-specified by a panel of experts. The odds ratios and areas

under the ROC curves for each daily model are reported in Table 1.

Table 1. Odds ratios and area under the ROC curve for the APACHE III daily risk estimate
models.58

Odds Ratios

ICU Day of stay Mortality (n)
Day 1
APS

Current
Day APS

Change in
APS aROC

Day 1 Model 17% (17,440) 1.97 - - 0.90
Day 2 Model 17% (14,034) 1.53 1.58 - 0.89
Day 3 Model 22% (8,860) 1.17 1.81 1.18 0.88
Day 4 Model 27% (5,884) 1.17 1.86 1.22 0.87
Day 5 Model 32% (4,164) 1.16 1.86 1.31 0.86
Day 6 Model 36% (3,137) 1.15 1.81 1.22 0.84
Day 7 Model 40% (2,489) 1.15 1.79 1.16 0.84

ICU: Intensive Care Unit
APS: APACHE III Acute Physiology Score
Change in APS: Previous day APS – Current day APS
n: Number of patients remaining in ICU
aROC: area under the receiver operating characteristic curve

The authors observed that although day one APS remained important in all

models, the current day APS and the change in APS from the previous to the current day

became consistently more important as the patient stayed longer in the ICU. Furthermore,

it was reported that although discrimination remained high in all models, the area under

the ROC curve consistently decreased as length of stay increased.

2.5.2 MPM

In order to improve the performance of risk prediction models on long-term stay

patients, three different MPM models were developed (MPM24, MPM48 and MPMOT)

using a 2,783 patient database collected in the adult general medical/surgical ICU at

Baystate Medical Center.50 The performance of these three models was compared

directly to the performance of the MPM0.

The MPM24, MPM48 and MPMOT all displayed good fit in the cohort of 948

patients whose length of stay was over 48 hours while the MPM0, which was developed

only on information available at admission, displayed poor calibration (H-L gof

p<0.0001). A direct comparison of the MPM48 and MPMOT suggested that MPMOT was

better at predicting conditional probabilities. In patients who ultimately died, MPMOT

was significantly better at predicting outcomes than MPM48 (p=0.05, McNemar’s chi-

square).
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When the MPM models were updated in the MPM II paper, MPM II24 displayed

good calibration in its developmental and validation data sets but calibration was poor

when it was applied to cohorts of patients remaining in the ICU at 48 and 72 hours, (H-L

gof p<0.001 for both 48 and 72 hour cohorts).52 Development of the MPM II48 and MPM

II72 was undertaken specifically to address the poor fit of the MPM II24 on longer stay

patients.

Both MPM II48 and MPM II72 demonstrated good performance in long stay

patients (MPM II48 H-L gof p=0.31, aROC=0.81 developmental, H-L gof p=0.59,

aROC=0.796 validation and MPM II72 H-L gof p=0.311, aROC=0.79 developmental, H-

L gof p=0.408, aROC=0.75 validation). Unfortunately, this paper did not compare the

performance of MPM II24 with MPM II48 or MPM II72 on these long stay cohorts using a

formal test of discrimination.

2.5.3 SAPS

Based on reports that both MPM and APACHE demonstrated decreased

performance in long stay patients, a comprehensive independent evaluation of the SAPS

scoring system was undertaken on a database composed of 8,059 patients collected from

24 centers throughout Europe.59 In this study, SAPS was scored on each patient at

admission using the original SAPS methodology54 and a logistic regression model was

developed using the approach outlined in the SAPS II paper.55 To evaluate the accuracy

of day one SAPS predictions in long stay patients, the area under the ROC curve was

calculated for 10 different patient cohorts. The first cohort was composed of all eligible

patients (N=8,059), the second was composed of all patients still remaining in the ICU on

day two (N=5,992), the third was composed of all patients remaining in the ICU on day

three (N=4,856) and so on for each of the initial 10 days of stay. The final cohort was

composed of patients who remained in the ICU on day 15.

The SAPS predictive equation demonstrated both good calibration and

discrimination (H-L gof p=0.32, aROC=0.79±0.01 developmental, H-L gof p=0.53,

aROC=0.78±0.01 validation), however the area under curve systematically decreased in

direct proportion to length of stay. The area under the ROC curve for the complete cohort

of patients (0.79±0.01) was reported as being significantly higher than the area under the

ROC curve for any other cohort of patients (Figure 1). This article demonstrated that the
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predictive power of a SAPS model developed on day one data systematically decreased

as length of stay increased. If a patient remained in the ICU for at least 15 days, outcome

prediction based on day one SAPS was reported as being no better than a “toss of the

coin”.

Figure 1. Relationship between area under the ROC Curve and length of stay for the SAPS
predictive equation.59

2.6 Neural Networks

Although logistic regression models have demonstrated acceptable predictive

performance, some researchers believe that further attempts at refining existing systems

will be fruitless and that understanding the complex patterns associated with mortality in

the ICU may require the use of alternative mathematical approaches such as set theory or

fuzzy logic.12,13 Artificial neural networks (ANNs) are one such alternative mathematical

approach that has generated a lot of interest in the field of medicine.

ANNs are pattern recognition algorithms that were originally developed by

cognitive science researchers and are modeled after the biological structure of the human

brain.60 ANNs are widely used in the engineering disciplines of signals processing, image

processing and control systems.61 In the field of speech recognition, ANNs have

consistently outperformed conventional regression techniques15 and are capable of

solving problems which even advanced artificial intelligence systems find difficult or
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impossible to solve.16 ANNs have even proven useful for gaining insights into the

appropriate modeling of survival data.62,63 A primer on ANN theory is presented in

Appendix I.

In the field of medicine, image processing neural networks have been trained to

diagnose hepatic masses17 and breast tumors19 with a level of accuracy similar to that of

experienced clinicians. In 1993, an image processing neural network was trained to

interpret ventilation-perfusion (V/Q) lung scans by exposing it to 100 consecutive V/Q

scans using the subsequent pulmonary angiogram to confirm the diagnosis.18 When

presented with a series of 28 new V/Q scans, the network reportedly performed better

than an experienced radiologist in the prediction of the chance of a pulmonary embolism.

A subsequent study combined V/Q scans and clinical assessment variables to

compare the diagnostic performance of ANNs to experienced clinicians. The data for this

study were abstracted from the 1,213 patient Prospective Investigation of Pulmonary

Embolism Diagnosis (PIOPED) study.64 The ANN was trained to diagnose pulmonary

emboli on a 606 patient developmental database and performance was assessed using a

607 patient validation database. Based on the area under the ROC curves, the ANN

performed as well as clinicians (area under the ROC curve: 0.83±0.013 vs. 0.85±0.017,

p=NS) in the diagnosis of pulmonary emboli. The ability of ANNs to diagnose and

predict outcomes has also been evaluated in various fields of medicine that do not rely

heavily on diagnostic imaging.

An extensive assessment of the ability of ANNs to diagnose hepatic failure was

undertaken using a database of 1,674 patients.65 The data were divided evenly into

developmental and validation databases containing 27 independent variables deemed to

be predictive of liver failure. The outcome (liver failure) was diagnosed by specific

laboratory tests that were not included among the 27 predictive variables.

A logistic regression model was developed using all variables with a univariate

probability less than 0.05 and all possible 2-way interactions. The ANN included all 27

available input variables. Based on the area under the ROC curves for the validation

database, there was no significant difference between the performance of the ANN and

the logistic regression model (0.68±0.03 vs. 0.69±0.03, p=0.45) but the ANN did perform

significantly better on the developmental database (0.80±0.03 vs. 0.74±0.03, p=0.04).
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A second smaller study used a 144 patient database composed of alcoholic

patients with severe liver disease to compare the ability of ANNs, clinical prediction

rules, and logistic regression to predict in-hospital mortality.66 Using a modified

jackknife technique, the performance of the ANN was found to be superior to a widely

accepted clinical prediction tool, the Maddrey score67 (area under the ROC curve 0.81 vs.

0.74, p=0.04) but not significantly different from the logistic regression model (area

under the ROC curve 0.82 vs. 0.78, p=0.3).

In cardiology, ANNs have been shown to be the most sensitive way to detect

electrocardiographic arm lead reversal;68 have been used to predict the risk of coronary

artery disease;69 to diagnose the onset of an acute myocardial infarction;70,71 to predict

hospital length of stay post-coronary care unit admission;72 and to predict ICU length of

stay after cardiac surgery.73

In a more recent study, the ability of an ANN to predict mortality post-cardiac

surgery was compared with logistic regression.74 This study used an extensive database

of 4,782 patients who underwent coronary artery bypass surgery for model development.

Two separate validation databases of 5,309 and 5,517 patients each were used to compare

predictive performance. Both ANNs and logistic regression models were developed using

11 variables that had previously been shown to predict mortality post-cardiac surgery.

These variables included; age, gender, ventricular ejection fraction, urgent/emergent

surgery, previous cardiac surgery, presence of left main coronary artery disease,

Canadian Cardiovascular Society angina class, recent myocardial infarction, diabetes,

presence of chronic obstructive lung disease, and presence of peripheral vascular disease.

The ANN evaluated in this study was a back-propagation network developed with

a learning rate of 0.1 and a momentum term of 0.1. The impact of using different

activation functions (logistic, hyperbolic tangent etc.) and varying the number of hidden

nodes was assessed on the predictive performance of the network.75 The logistic

regression model contained main-effects only. The performance of the ANN and the

logistic regression model did not differ significantly when compared using the areas

under the ROC curve for the validation database (0.78 vs. 0.77, p>0.10).

Accurate quality assessment programs are essential to the prevention, triage and

treatment of severely injured trauma patients.76 In one study based on data collected on
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over 114,000 trauma patients, an ANN was shown to predict survival more accurately

than the widely accepted Injury Severity Score (ISS). At a cut-off value of 0.5, the paper

reports the ANN demonstrated higher sensitivity (0.99 vs. 0.91), higher specificity (0.50

vs. 0.45) and a higher overall accuracy (0.98 vs. 0.90) than the ISS.77

A second study used an 8,300 patient database composed of physiological and

diagnostic criteria to assess the ability of an ANN to predict survival in trauma patients.78

The back-propagation ANN was generated on a randomly selected 3,500 patient

developmental database using the Revised Trauma Score (RTS), the ISS and age as input

variables. The network was then applied to a 4,800 patient validation database and

compared to the performance of the Trauma and Injury Severity Score (TRISS) and

ASCOT. Both TRISS and ASCOT are highly validated logistic regression-based severity

scores and use RTS, ISS and age as inputs. The ANN, TRISS and ASCOT all

demonstrated poor fit (H-L gof p<0.05 all models) on the validation database. Using a

cut-off value of 0.50, the sensitivity of the ANN, TRISS and ASCOTT was 0.904, 0.840

and 0.842 and the specificity was 0.972, 0.985 and 0.985 respectively. Based on a chi-

square analysis, the ANN had both the highest sensitivity (p<0.05) and the lowest

specificity (p<0.05).

In critical care medicine, two publications have objectively assessed the ability of

ANNs to predict mortality in patients admitted to the ICU. In one of these studies, a

genetic learning algorithm was used to optimize network architecture.79 This study

abstracted information from 258 ICU patients who were documented to have the

Systemic Inflammatory Response Syndrome (SIRS). The database was randomly divided

into a 168 patient developmental data set and a 90 patient validation data set. From 157

eligible candidate variables, a Classification and Regression Tree approach was used to

select 11 variables for entry into the ANN and univariate analysis was used to select 9

variables for entry into the logistic regression model. Four significant 2-way interactions

were added to the logistic regression model. Based on the aROC, the authors claimed the

ANN outperformed the logistic regression model in the validation data set (0.863 vs.

0.753, no standard error or significance tests were reported).

In the publication that served as the pilot project for this thesis, a 420 patient

database composed of the APS components of APACHE II collected on day 3 of ICU
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stay was used to investigate the potential of an ANN to outperform a main-effects logistic

regression model.80 In this project, the back-propagation ANN exhibited discrimination

superior to that of the multivariate logistic regression model in the 284 patient

developmental data set (aROC 0.99 versus 0.92). The ANN performed with a positive

predictive value of 0.98 and a negative predictive value of 1.0. When discrimination was

compared on the 138 patient validation data set, the two methods performed equally well

(aROC = 0.82).

Based on these results, the authors concluded that the neural network

demonstrated the potential to outperform logistic regression with respect to the prediction

of mortality in the ICU. It was also concluded that scoring on day three demonstrated the

potential to improve performance over scoring on day one when predicting mortality of

patients whose duration of stay was over 72 hours. It was proposed that using a neural

network combined with day 3 data collection might result in risk estimates that could

support clinical decisions and that these hypotheses should be tested in a project designed

with sufficient power to assess them adequately. The copyright release for the

reproduction of this pilot project is in Appendix II and the complete report of this pilot

project is in Appendix III.

2.7 Research Questions

Logistic regression-based severity-of-illness scores are widely used to support

quality assurance and resource utilization decisions. Although admission scores predict

outcomes with acceptable accuracy when applied to the entire population of ICU

patients, predictive performance decreases significantly as the patient’s length of stay

increases.

Artificial neural networks are a novel prediction tool that have previously been

shown to outperform classical statistical techniques in certain situations. Based on a

thorough review of the literature and the results of the pilot project, this thesis addresses

the following primary research questions:

1) Can artificial neural networks perform mortality prediction in the ICU better

than the currently used technique of multivariate logistic regression?
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2) For patients with a duration of stay over 72 hours, will scoring on day 3 of ICU

stay rather than day 1 increase the predictive performance of both artificial neural

networks and logistic regression?

This project addresses the following secondary question:

1) Can artificial neural networks perform mortality prediction in the ICU

significantly better than experienced clinicians, and thus demonstrate the potential to

become a useful clinical decision support tool?
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3. Methods

3.1 Location

This analytical observational study was undertaken in the Richard Ivey Critical

Care Trauma Centre (CCTC), a 30 bed adult ICU that admits medical, surgical,

neurological, cardiac surgery and trauma patients from the Victoria Campus of the

London Health Sciences Centre (LHSC). The LHSC is a tertiary care teaching hospital

associated with the University of Western Ontario.

3.2 Ethics

A two page overview outlining the purpose and methods of this project was

submitted to the University of Western Ontario Ethics Review Board Office. The Chair

of the Review Board For Health Sciences Research Involving Human Subjects

determined that since this study was observational in nature and did not request or

generate new information above or beyond what is normally accrued upon routine patient

admission to the ICU, that a formal ethics review was unnecessary. The two page

overview was approved on the conditions that the principal investigator (GSD) sign a

confidentiality agreement with LHSC and that results would be published in such a way

that individual patients could not be identified.

3.3 Patient Selection and Data Abstraction

Beginning March 1, 1994 and continuing through February 28, 1996, all patients

admitted to the Richard Ivey CCTC were screened for entry into the study if they were

present in the ICU at morning rounds three days after admission. If a patient were present

at calendar day three morning rounds, and a discharge or withdrawal of care was not

scheduled prior to the beginning of the rounds, they were formally entered into the study.

The pilot project for this thesis was conducted using a data set composed of

APACHE II data elements.80 APACHE III identified the 13 physiological variables of

APACHE II plus five additional physiological variables, source of admission and age as

independent predictors of mortality.9 These components of the APACHE III scoring

system were abstracted from patient charts following the methodology outlined by Knaus

et al.9 All data were collected on the morning of day three of stay. A complete list of
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variable names is presented in Table 2. A reproduction of the data collection form can be

found in Appendix IV.

Table 2 . Summary of variables collected, units used and abbreviations.

For the purposes of this study, emergent surgery was defined as admission to the

ICU immediately following unscheduled surgery for a life threatening condition. The

CCTC is a level one trauma centre, so the majority of these admissions are as a result of

trauma surgery. Other examples of procedures that would qualify for the designation of

emergent used during this study include: surgery for a ruptured abdominal aortic

aneurysm, surgery to drain an abdominal abscess, urgent cardiac bypass surgery or

surgery for a ruptured cerebral aneurysm.

Demographic Variables                                       Units                        Variable Name
Admission date - Date of birth      years              age
Gender                              binary             male
Source of Admission:

Non-operative admissions:
Emergency room  (referent)      binary             emerg
Hospital floor                  binary             hosp
Transfer from another ICU       binary             icutrans
Transfer from another hospital  binary             hosptran
Operative admission:
Emergent surgery                binary             or
Elective surgery                binary             elective

Physiologic Variables
Glasgow Coma Scale            score from 3 to 15       gcs(s)(3)
Temperature                          °C                temp(s)(3)
Systolic blood pressure              mmHg              sbp(s)(3)
Diastolic blood pressure             mmHg              dbp(s)(3)
Heart rate                      beats per minute       hr(s)(3)
Respiratory rate               breaths per minute      rr(s)(3)
Urine output                      L per day            uo(s)(3)
Fraction of inspired oxygen                            FiO2(s)(3)
Partial pressure of arterial O2      torr.             PaO2(s)(3)
Partial pressure of arterial CO2     torr.             PaCO2(s)(3)
pH                                                     ph(s)(3)
Hemoglobin                            g/L              hb(s)(3)
White blood cell count               x1012/L            wbc(s)(3)
Platelets                            x1012/L            pts(s)(3)
Serum sodium                         mmol/L            na(s)(3)
Serum potassium                      mmol/L            k(s)(3)
Serum albumin                          g/L             alb(s)(3)
Blood urea nitrogen                  mmol/L            bun(s)(3)
Serum creatinine                     Umol/L            creat(s)(3)
Glucose                              mmol/L            glu(s)(3)
Bilirubin                            Umol/L            bili(s)(3)
(s) suffix denotes ‘Scaled’ variable
(3) suffix denotes Day 3 physiologic data
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3.3.1 Consultant’s Predicted Outcome

At the conclusion of day three morning rounds, the attending ICU consultant was

requested to predict a patient’s probability of surviving until ICU discharge, using an 11

point visual analog scale (See Appendix IV). A consultant predicted outcome was not

requested on patients whose ICU discharge or withdrawal of care was scheduled during

day three morning rounds.

3.4 Primary outcome of interest

The primary outcome of ICU-based mortality, as reflected by ICU discharge

status, was collected by the CCTC’s management information system which

prospectively tracks status at discharge for all patients admitted to the ICU.

3.5 Database validation

The first stage of primary data integrity checking was undertaken by

incorporating range restrictions into the data entry process, which was undertaken using a

dBase© III a database. While the data were being entered into the database, a value

recorded on the study code sheet as ‘out of range’ was entered as a missing value. More

extensive validation with algorithms written to filter out biological impossibilities and

obvious data entry transpositions was carried out using PC SAS® version 6.12b. Any

values in conflict with the screening filters were re-entered directly from the study

codebook.

If the study code book was found to have more than 4 missing or out of range

values on any one particular patient, the patient’s chart was requested from Medical

Records and the missing information was re-abstracted and re-entered into the database.

Secondary validation was carried out by match-merging the study database with

the ICU management information system (MIS) based on patient identification number

(PIN) and date of admission. In cases where a merging match did not occur, patients were

                                                
a INPRISE Corporation, 100 Enterprise Way, Scotts Valley, CA 95066-3249, U.S.A.

b PC SAS® version 6.12, SAS Institute Inc., SAS Circle, PO Box 8000,Cary, NC, 27512-
8000, U.S.A.
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matched manually by comparing admission data, date of birth, and gender. This MIS

database allowed validation of date of birth, ICU entry date, ICU discharge date and

actual number of patients available for entry into the study. Since the MIS database is

used for management and billing purposes, its entries are double verified and seldom

incorrect. Conflicts with the study database were resolved by accepting the MIS database

as correct.

3.6 Analysis

All statistical analysis was conducted using PC SAS Version 6.12 running under

Microsoft Windows NT Workstation 4.0, Windows 95 or Windows 98 a on a Pentium II

computer.

3.6.1 Descriptive statistics

Preliminary inspection of the data was undertaken using graphical and descriptive

statistical techniques. Frequency plots and normal probability plots were generated to

inspect data distributions. A formal test of association between the presence of missing

values and the primary outcome of ICU-based mortality was undertaken. Although other

approaches were considered, missing values were replaced with imputed average values.

Where the assumptions of normality were found to be inappropriate, descriptive

data were presented as median and range. Otherwise, descriptive statistics were reported

as frequencies or means and standard deviations.

3.6.2 Developmental and validation data sets

Using SAS, an index number was randomly generated from a distribution with

mean of zero and a standard deviation of one for each patient record. The entire 1,149

patient database was sorted in ascending order by this randomly generated index number

and the first 338 patients (30 percent) were removed and stored in a ‘validation’ database.

The remaining 811 patient database was termed the developmental database and was

used to develop both the logistic regression and neural network models. After all the

models were developed, the performance of the models was compared based on their

ability to predict outcomes in the validation data set.

                                                
a Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399, U.S.A.
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3.7 Logistic regression model development

Three distinct logistic regression models were developed. The first model

considered demographic variables and day one physiologic variables for entry; the

second model considered demographic variables and day three physiologic variables; and

the third model was developed using demographic variables, day three physiologic

variables plus the predicted output of the first (day one) model. All logistic regression

modeling was performed using PROC Logist in PC SAS version 6.1281 with the

events/count statement in the model specification. The event of interest was ICU

mortality coded as one for mortality and zero for survival to ICU discharge. The variable

count was coded one for all cases. User selectable options were set to default values

recommended by the software package authors.

3.7.1 Basic logistic regression modeling methodology

Step 1. Variable Selection

Univariate analysis was undertaken with each independent prognostic variable

regressed against the primary outcome of ICU-based mortality. All variables with a

univariate p-value less than 0.25 were considered for entry into the maximum model.82

Step 2. Specification of the Maximum Model

 The maximum model contained all demographic and physiologic variables

identified in Step 1. All possible two-way interactions between physiologic terms were

eligible for entry into the maximum model.

Categorical demographic variables were represented as zero cell referent dummy

variables. Since the pilot project revealed the potential for problems associated with

multicollinearity, and since all previous investigations (APACHE, SAPs and MPM) have

failed to document significant physiologic-demographic interaction terms, interaction

terms between physiologic and demographic variables were not eligible for entry into the

maximum model.

Step 3. Assessment for Multicollinearity

In the pilot project, standardization of the independent variables was required in

order to avoid problems associated with multicollinearity. The maximum model was

formally assessed for multicollinearity using Eigenanalysis with a condition index greater

than or equal to 30 considered indicative of moderate to severe collinearity.83
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Multicollinearity was addressed by standardizing all continuous independent variables,84

the success of which was assessed using Eigenanalysis.

Step 4. Model Selection

After investigating the presence of multicollinearity, the maximum model was

entered into a backwards selection model building process. In the first pass, all main

effects were forced to stay in the model and the p-value to stay for interaction terms was

set at 0.10.82

 After all non-significant interaction terms were removed from the model, all

main effects that were not associated with significant interaction terms were assessed for

statistical significance using a back-ward elimination process and were left in the model

if the likelihood ratio test p-value was less than 0.10. Main effects that contributed to

significant interaction terms were always retained in the model regardless of the main

effect’s significance. All p-values used for decision making during the model selection

process were based on likelihood ratio tests.

Step 5: Regression diagnostics

After generation of the final predictive model, performance on the developmental

database was assessed. Calibration was assessed with the Hosmer-Lemeshow ^
C

goodness of fit statistic85 and discrimination was reported using the c-statistic,86 which is

numerically equivalent to the area under the ROC curve.87

3.7.2 Day 1 logistic regression model development

The basic modeling approach described above was used to develop the day one

logistic regression model. The variables that were considered for entry into the maximum

model included demographic variables and day one physiologic variables (Table 2). This

model is referred to as logistic model one (LM1).

3.7.3 Day 3 logistic regression model development

Two unique logistic regression models were developed using the data available

by day three of stay. The first day three logistic model was developed using the basic

modeling approach as described above and considered for eligibility all demographic

variables plus day three physiologic variables (Table 2). This model is referred to as

logistic model two (LM2).
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A second day three model was developed as an extension to LM2. This model

used the approach described in developing LM2 but it also incorporated the predicted

output of LM1 as a main effect. To form its predictions this third logistic model (LMOT)

therefore incorporated all information that became available over time by day three of

stay.

3.8 Artificial neural network model development

Four distinct ANNs were developed using NeuroShell 2, Release 3.0a software. In

all cases, user selectable options were set to default values recommended by the software

package authors.

The four distinct ANNs were: 1) a back-propagation network developed on

patient demographics and day one physiologic variables; 2) a back-propagation network

developed on patient demographics and day three physiologic variables; 3) a back-

propagation network developed on patient demographics, day one physiologic variables

and day three physiologic variables; and 4) a genetic adaptive learning network

developed on patient demographics and day three physiologic variables. All ANNs were

developed on the same 811 patient developmental database used for the logistic

regression model generation.

3.8.1 Basic back-propagation network development.

                                                
a Ward Systems Group, Inc., Executive Park West, 5 Hillcrest Dr., Frederick, MD.
21703, U.S.A.
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The primary network topology used for this project was a three-layered back-

propagation network with the hidden layer composed of 3 Slabs (Figure 2).

Figure 2. Back propagation neural network architecture.

All input variables were standardized (normalized) and then offered into the

individual neurons of the input layer (Layer 1). The input layer contained one active

transfer function (neuron) per input variable. The number of hidden transfer neurons

(Nhid) in each of the three subsequent slabs was determined by Equation 1 where Ninput is

the number of input variables, Nout is the number of outcome variables, Ncases is the

number of cases in the developmental data set and Nslabs is the number of slabs in the

network under development. In all back-propagation networks considered here, Nslabs was

fixed at the default of three and Nout was fixed at one.

Transfer Functions and Number of Nodes per Layer (n):

Layer 1:f(x)=x,n=27

Layer 2a*:f(x)=exp(x2),n=14

Layer 2b*: f(x)=tanh(x),n=14

Layer 2c*: f(x)=1-exp(x2),n=14

Layer 3:f(x)=1/(1+exp(-x)),n=1

Total Number of Hidden Nodes:

(27*14)+(27*14)+(27*14)+1=1135

  *Layer 2 contains 3 slabs of 14 neurons each
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Equation 1. Formula used to calculate the appropriate number of hidden nodes per
network slab.88
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=
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2
1

Since the input variables were already standardized, Layer 1 used a simple linear

transfer function to map information to Layer 2a, 2b and 2c. Layer 2a used a Gaussian

transfer function to pass information to the output node, Layer 2b used the hyperbolic

tangent function and Layer 2c used a Gaussian complement function to pass information

to the output neuron. The output neuron (Layer 3) used a logistic function to map

incoming information from Layer 2a, 2b and 2c into an estimate of the expected

probability of mortality. Extensive evaluations of this approach are available elsewhere.74

See Figure 2 for a complete listing of these transfer functions.

Learning rate refers to the minimum amount that each weight (regression

parameter) may change after each training case, with larger learning rates indicating

greater weight changes. The momentum term allows each weight change to be

proportional to the magnitude of the previous change. Momentum allows the network to

avoid local minimum in the error surface and speeds up convergence. The default

parameters of a learning rate of 0.1, a momentum of 0.1 and initial node weights of 0.3

were used. Learning was terminated after 100,000 learning epochs had occurred without

the generation of a new minimum average error on the test set. In the neural network

literature, average network error is defined as the sum of the squares of the individual

differences between the actual output values and the networks predicted output values.

For further details on the back propagation algorithm, see Appendix I.

3.8.2 Artificial Neural Network 1: Day 1 model

The first back-propagation network was developed using all available

demographic data plus day one physiological data. Since source of admission was offered
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to the network as a dummy variable with Emergency Room coded as the referent, there

were 28 unique input variables and thus 28 neurons in the input node.

3.8.3 Artificial Neural Network 2: Day 3 model

 The second back-propagation network was developed using demographic data

plus day three physiological data. Twenty-eight unique input variables were offered into

this model.

3.8.4 Artificial Neural Network 3: Day 3 model over time

This model contained all data available by day three: demographic variables, day

one physiologic variables and day three physiologic variables. This model therefore

considered 48 unique input variables.

3.8.5 Artificial Neural Network 4: Genetic Learning Algorithm

The fourth neural network developed was a three layered general regression net

that used a genetic adaptive learning algorithm (GenNet). The input data set was

composed of all available demographic variables (age, gender and source of admission)

and the twenty physiologic variables collected on day three of stay. The network was

trained on the 811 pattern training set and calibrated on the 338 patient validation set.

The transfer function in the input layer of GenNet was a one to one mapping of

the standardized input variables to the neurons in the second layer. When using the

genetic adaptive learning algorithm, the number of neurons in the second layer is set to

the sum of the number of available training and validation cases. The number of hidden

neurons was therefore set to 1,149 (811 training cases+338 validation cases=1,149

hidden neurons). The default smoothing factor of 0.2468 was used for all connections and

the genetic breeding pool size was set to 100. Development was terminated when average

validation network error did not improve more than one percent after a 20 generation

learning cycle. For further reading on the genetic adaptive learning algorithm, see

Appendix V.

3.9 Sample Size Considerations

Since this study was driven by the application of neural network theory, it was

decided that our sample size calculations should be determined by concerns arising from

that field.
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Based on information generated from the pilot project, it was determined that a

reasonable number of inputs to the neural network would be 44 variables (at most 36

APS measurements plus the 8 demographic measurements of the APACHE III score).

Since the pilot study required 18 hidden nodes, it was a reasonable assumption that the

future study network would require approximately 18 hidden nodes. Given a network of

44 inputs, 18 hidden nodes and 1 output node, there would be (44+1)*18 = 810

interconnections or modifiable weights.

Although there are no formal methods to determine the size of a training set

required for a network to achieve acceptable performance, many researchers have found

that it begins to appear when the net is presented with at least one training event per

modifiable weight.89 With 810 interconnections or modifiable weights the expected

network would require a training set of at least 810 events to achieve acceptable

performance. Since the training (developmental) data set would be composed of two-

thirds of the total data set, a total of at least 1,215 eligible patients was estimated to be

required in the complete database.

3.10 Feasibility

3.10.1 Subject Availability

During the 6 month sampling period for the pilot project, 614 patients were

admitted to the CCTC. Of the 614 admissions, 422 had a duration of stay over 72 hours.

This translates into 70 eligible patients per month. Since a minimum sample size of 1,215

patients is required, then in 18 months of sampling, 1,260 patients would become eligible

for the study. This would be the minimum acceptable collection period to expect

reasonable performance from the neural network.

3.11 Comparing Predictive Performance: The Validation Database

Primary comparisons were conducted based on performance on the 338 patient

validation database. Goodness of fit for all models was assessed using the H-L ^
C

statistic with 8 degrees of freedom on a chi-square distribution in the developmental

database and 10 degrees of freedom in the validation database.82,85 Discrimination was

assessed using the area under the ROC curve. The area under the ROC curve, along with
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its associated standard error, was calculated via the Dorfman-Berbaum-Metz maximum

likelihood method 90 using the computer program ROCKIT a.

Primary comparisons of the areas under the ROC curves were conducted by using

a formal statistical test developed for correlated (paired) data.91

                                                
a ROCKIT 0.9B – beta version (March 1998), Charles E. Metz, Department of Radiology
and the Franklin McLean Memorial Research Institute, The University of Chicago,
Chicago, Ill, 60637.
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4. Results

4.1 Patient Selection

Of the 3,728 patients admitted to the CCTC during the 24 month period from

March 1, 1994 through February 28, 1996, 1,263 patients were present in the ICU at 48

hours and were therefore screened for study eligibility. Eighty-two of these 1,263 patients

had an ICU discharge scheduled prior to data collection on the morning of day three. The

remaining 1,181 patients had an ‘expected length of stay greater than 72 hours’ at the

time of data collection and were therefore formally entered into the study.

Information was abstracted prospectively from patient records and recorded in the

study logbook. A complete listing of all variables collected, along with their

abbreviations, is presented in Table 2.

4.2 Database Validation

Initial data validation was performed by simple range checks at the time of input

into the dBase III database. Extensive validity checking in SAS revealed that, at the time

of original data collection, approximately 300 of these 1,181 patient records had more

than four missing or out of range values. Patient identification numbers for these 300

patients were submitted to medical records and a retrospective chart audit was performed

to fill in the missing data.

Of the 300 charts requested, 32 charts could either not be found by medical

records or were found to be significantly incomplete at the time of retrospective

abstraction. A chart was considered significantly incomplete when physiologic values for

at least an entire day were missing. Due to the large amount of missing data for each of

these 32 patients, the only variables consistently available for comparison were the

outcomes recorded by the CCTC database. The median length of stay for these 32

patients was 3.9 days, (range 3 to 73 days) and the ICU-based mortality was 28 percent.

These values were not significantly different from those of the 1,149 patients on whom

complete information was available (median length of stay 6 days with a range of 3 to

179 days, ICU based mortality 14.4 percent). Due to the unavailability of significant

portions of information on these 32 patients, they were excluded from further analysis.
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The remaining 1,149 patients comprised the final data set. A directed chart audit

revealed that the missing value rate for the entire data set was 6.75 percent. On further

investigation two variables, bilirubin collected on day one and bilirubin collected on day

three, were responsible for 60 percent of all missing values. Since clinicians from the

CCTC do not routinely order these tests on all patients, these two variables were

excluded from further analysis, reducing the overall missing value rate to 2.62 percent.

An evaluation of the relationship between missing values and outcome was

undertaken. Using Fisher’s Exact test and controlling for multiple comparisons using a

Bonferonni correction revealed that missing values for three different variables were

associated with an improved outcome. Having a missing value for blood glucose on day

one was significantly associated with a decreased risk of mortality (2.45% vs. 16.07%,

relative risk = 0.15, p=1.67E-07), as was a missing blood glucose value on day three

(3.75% vs. 15.82%, relative risk = 0.24, p=7.56E-6). A missing blood urea nitrogen

(BUN) value on day three (3.24% vs. 16.23%, relative risk = 0.20, p=2.25E-07) was also

found to be associated with an improved outcome. For these three and for all other

variables, the mean value was associated with improved outcomes. All missing values

were replaced with calculated mean values.

4.2.1 Descriptive statistics

The overall mortality rate for the 1,149 patients in the final database was 14.4

percent. Descriptive statistics for all demographic variables are presented in Table 3.

Descriptive statistics for all physiologic variables are presented in Table 4.

Table 3. Descriptive statistics on demographic variables in the complete 1,149 patient
database.

Variable name
Age
Gender
Length of stay
Non-operative admissions

Emergency room
Hospital floor
Transfer from another hospital
Transfer from another ICU

Post-operative admissions
Elective surgery
Emergent surgery

Total patients

    Results
     61.8±17.25 years
     38.6% females
     6 (3 to 179) days

     292 (25.4%)
     238 (20.7%)
     65 (5.7%)
     65 (5.7%)

     252 (21.9%)
     237 (20.6%)
     1,149

  Length of stay is presented as median (range).
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Table 4. Descriptive statistics on physiologic variables in the complete 1,149 patient
database.

Variables Collected on Day 1                                          Standard
Name                                              n                Mean        Deviation     Minimum    Maximum
Glasgow coma scale          1149       7.38       4.47        3         15
Albumin                     1149      27.55       6.98        2         48
Bilirubin                     57      14.45      10.16        3         49
Blood urea nitrogen         1149       9.73       7.05        0.57      87
Creatinine                  1149     139.72     117.54       10       1470
Diastolic blood pressure    1149      62.71      22.81        8        150
FiO2                        1149       0.75       0.25        0.21       1
Glucose                     1149      15.62      13.64        0.50     309
Hemoglobin                  1149     108.83      26.05        9.9      201
Heart rate                  1149     102.83      32.05       17        300
Potassium                   1149       3.91       0.75        1.8        7.5
Sodium                      1149     138.09       6.00      112        216
PaCO2                       1149      36.84      12.71       10        311
PaO2                        1149     214.40     140.47       10        652
pH                          1149       7.39       0.09        6.95       7.69
Platelets                   1149     209.36     108.82        1        678
Respiratory rate            1149      16.19       8.28        3         56
Systolic blood pressure     1149     132.50      44.97       15        293
Temperature                 1149      36.62       1.74       29.7       42.6
Urine output                1149    1471.38     931.70        2       7801
White blood cell count      1149      14.38      15.73        0        195
Variables Collected on Day 3                                          Standard
Name                                              n                Mean        Deviation     Minimum    Maximum
Glasgow Coma Scale          1149      11.51       3.75        3         15
Albumin                     1149      28.81       6.05        8         46
Bilirubin                     41      24.68      16.94        3         70
Blood urea nitrogen         1149      11.88       8.52        0.53      53
Creatinine                  1149     132.68     130.43       10       1980
Diastolic blood pressure    1149      63.19      18.14        6        150
FiO2                        1149       0.47       0.16        0.21       1
Glucose                     1149      13.29      12.12        0.5      303
Hemoglobin                  1149      97.84      20.49        9        177
Heart rate                  1149     102.08      29.56        4        283
Potassium                   1149       4.01       0.58        1.65       8.8
Sodium                      1149     138.17       5.32      113        160
PaCO2                       1149      41.10      14.31       10        377
PaO2                        1149      95.67      37.73       10        460
pH                          1149       7.41       0.07        6.97       7.98
Platelets                   1149     168.53      95.23        1        663

White blood cell count      1149      13.59      10.37        0.6      152
Respiratory rate            1149      19.15       7.30        3         60
Systolic blood pressure     1149     138.88      36.35        7        246
Temperature                 1149      37.56       1.01       30.6       41
Urine output                1149    1413.97     818.93        0       5800
All variables were recorded using standard SI units except blood pressure, which was recorded in mmHg. See Table 2 for
a complete listing.

4.3 Logistic regression model development

4.3.1 LM1: Logistic Model based on day one data

Step 1. Variable Selection

Table 5 presents the results of the descriptive analysis of the demographic

variables. Source of admission was the only demographic variable that was associated

with outcome (p<0.25) and therefore qualified for entry into the maximum model.
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Table 5. Results of univariate logistic regression analysis of the association between
demographic factors and outcome in the 811 patient developmental database.

Variable                         Parameter     Standard           Wald             Probability         Odds
Name                              Estimate           Error          Chi-Square          value              Ratio
Age                0.0012    0.0049     0.0608      0.8052     1.001
Gender            -0.1297    0.1712     0.5736      0.4488     0.878
Source of Admission
 Emergency room     (referent)
 Hospital Floor    0.8344    0.2411                            2.303
 Another Hospital  0.0967    0.4204                            1.102
 Another ICU       0.6740    0.3610                            1.962
 Elective Surgery -0.6309    0.3176                            0.532
 Emergent Surgery  0.4958    0.2523                            1.642
            Likelihood Ratio Chi-square  33.550 with 5 DF (p=0.0001)

The following day one physiologic variables were eligible (p<0.25) for entry into

the maximum model: albumin (alb), blood urea nitrogen (bun), creatinine (creat),

diastolic blood pressure (dbp), fraction of inspired oxygen (FiO2), glucose (glu), heart

rate (hr), partial pressure of arterial oxygen (PaO2), pH, platelets (pts), respiratory rate

(rr), urinary output (uo), and white blood cell (wbc) count. A detailed listing of univariate

regression results for day one physiologic variables is presented in Table 6.

Table 6. Results of univariate logistic regression analysis of the association between
physiologic variables collected on Day 1 and outcome in the 811 patient developmental
database.

Variable                                Parameter     Standard         Wald          Probability        Odds
Name                                      Estimate         Error       Chi-Square         Value             Ratio
Glasgow coma scale        0.0021    0.0235     0.0086      0.9263      1.002
Albumin                  -0.0385    0.0149     6.7206      0.0095      0.962
Blood urea nitrogen       0.0749    0.0134    30.9711      0.0001      1.078
Creatinine                0.0019    0.0006     8.5880      0.0034      1.002
Diastolic blood pressure -0.0062    0.0048     1.6657      0.1968      0.994
FiO2                      0.5620    0.4276     1.7274      0.1887      1.754
Glucose                  -0.0235    0.0121     3.7955      0.0514      0.977
Hemoglobin               -0.0008    0.0039     0.0518      0.8199      0.999
Heart rate                0.0074    0.0032     5.1009      0.0239      1.007
Potassium                 0.1016    0.1380     0.5419      0.4617      1.107
Sodium                   -0.0094    0.0184     0.2654      0.6064      0.991
PaCO2                     0.0083    0.0103     0.6541      0.4186      1.008
PaO2                     -0.0028    0.0008    10.9845      0.0009      0.997
PH                       -3.7569    1.0583    12.6028      0.0004      0.023
Platelets                 0.0032    0.0009    11.1473      0.0008      1.003
Respiratory rate          0.0312    0.0116     7.2152      0.0072      1.032
Systolic blood pressure  -0.0023    0.0023     1.0151      0.3137      0.998
Temperature               0.0502    0.0612     0.6727      0.4121      1.051
Urine output              0.0002    0.0001     7.6254      0.0058      1.000
White blood cell count    0.0086    0.0048     3.1965      0.0738      1.009

Bold indicates variables with probability values less than 0.25.
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Step 2. Specification of the Maximum Model

The maximum model contained the following variables as main effects: source of

admission, a dummy variable with emergency room as referent, alb, bun, creat, dbp,

FiO2, glu, hr, PaO2, pH, pts, rr, uo and wbc. The maximum model also contained all

possible 2-way interactions between the physiologic variables. A complete list of

interaction terms generated for this maximum model can be found in Appendix VI.

Step 3. Assessment for Multicollinearity

Eigenanalysis of the maximum model revealed a condition index of 395, which

indicated the presence of severe multicollinearity. The continuous variables in the

maximum model were standardized and 2-way interactions were recalculated. After

standardization, the condition index was 6.87, indicating that standardization had

addressed the issues of multicollinearity.

Step 4. Model Selection

After all non-significant interaction terms were removed from the model, main

effects that were not associated with significant interaction terms were tested for

significance using likelihood ratio tests. No main effect terms were removed. Table 7

shows the final results of the modeling process.
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Table 7. Final regression parameters and associated probability values for multivariate
Logistic Model 1 (LM1).

Variable                                                    Parameter   Standard    Wald     Probability  Odds
Name                                                          Estimate      Error    Chi-Square   Value       Ratio
INTERCPT -3.1889 0.3193 99.7388 0.0001
Hospital Floor 1.1986 0.3725 10.3520 0.0013 3.316
Hospital Transfer -0.3791 0.6381 0.3531 0.5524 0.684
ICU Transfer 0.7851 0.5618 1.9530 0.1623 2.193
Elective Surgery 0.0842 0.4146 0.0412 0.8391 1.088
Emergent Surgery 1.1459 0.3770 9.2371 0.0024 3.145
Albumin(s) -0.2155 0.1272 2.8702 0.0902 0.806
Blood urea nitrogen(s) 0.7108 0.1239 32.9162 0.0001 2.036
Diastolic blood pressure(s) -0.0658 0.1334 0.2434 0.6217 0.936
FiO2(s) 0.3473 0.1431 5.8875 0.0152 1.415
Glucose(s) -0.8760 0.2614 11.2274 0.0008 0.416
Heart rate(s) 0.0209 0.1363 0.0235 0.8782 1.021
PaO2(s) -0.3812 0.1565 5.9306 0.0149 0.683
pH(s) -0.3487 0.1305 7.1421 0.0075 0.706
Platelets(s) 0.4616 0.1296 12.6778 0.0004 1.587
Respiratory rate(s) 0.1981 0.1413 1.9660 0.1609 1.219
Urine output(s) 0.3752 0.1135 10.9229 0.0009 1.455
White blood cells(s) 0.0840 0.1354 0.3854 0.5347 1.088
Albumin(s)*diastolic blood
 Pressure(s)

0.3830 0.1240 9.5349 0.0020 1.467

Albumin(s)*white blood cells(s) -0.3200 0.1557 4.2272 0.0398 0.726
Blood urea nitrogen(s)*glucose(s) 0.7321 0.2159 11.4961 0.0007 2.080
Diastolic blood pressure(s)
 *heart rate(s)

-0.3258 0.1356 5.7701 0.0163 0.722

FiO2(s)*urine output(s) -0.3673 0.1224 9.0122 0.0027 0.693
Heart rate(s)*platelets(s) 0.2425 0.1378 3.0971 0.0784 1.274
PaO2(s)*pH(s) 0.3828 0.1341 8.1530 0.0043 1.466
PaO2(s)*respiratory rate(s) 0.2897 0.1550 3.4960 0.0615 1.336
pH(s)*respiratory rate(s) 0.4623 0.1399 10.9249 0.0009 1.588
Platelets(s)*respiratory rate(s) -0.3120 0.1260 6.1291 0.0133 0.732

For a complete list of variable names, see Table 2.
(s) denotes standardized variable.
Variable name1*variable name2 denotes interaction term.

Step 5. Regression Diagnostics

On the 811 patient development data set, the final day one logistic model revealed

a c-statistic of 0.850 and Hosmer and Lemeshow ^
C  chi-square of 7.0324, which has an

associated p-value of 0.5331 with eight degrees of freedom.

4.3.2 LM2: Logistic Model based on day three data

Step 1. Variable Selection

Source of admission was the only demographic variable that was associated with

outcome (p<0.25) and qualified for entry into the maximum model.

The following physiological variables collected on day three of stay were

associated with mortality with a p-value less than 0.25: day 3 Glasgow Coma Scale score

(gcs3), day 3 blood urea nitrogen (bun3), day 3 creatinine (creat3), day 3 diastolic blood



38

pressure (dbp3), day 3 fraction of inspired oxygen (FiO23), day 3 heart rate (hr3), day 3

sodium (na3), day 3 partial arterial pressure of carbon dioxide (PaCO23), day 3 partial

arterial pressure of oxygen (PaO23), day 3 pH (pH3), day 3 platelet count (pts3), day 3

respiratory rate (rr3), day 3 temperature (temp3), day 3 urinary output (uo3), and day 3

white blood cell count (wbc3) (Table 8).

Table 8. Results of univariate logistic regression analysis of the association between
physiologic variables collected on Day 3 and outcome in the 811 patient developmental
database.

Variable                                 Parameter   Standard       Wald          Probability       Odds
Name                                       Estimate     Error        Chi-Square         Value           Ratio
Glasgow coma scale       -0.2452   0.0277    78.5541      0.0001     0.783
Albumin                  -0.0328   0.0175     3.5025      0.0613     0.968
Blood urea nitrogen       0.0335   0.0106     9.9508      0.0016     1.034
Creatinine                0.0044   0.0007    39.8221      0.0001     1.004
Diastolic blood pressure -0.0272   0.0065    17.2520      0.0001     0.973
FiO2                      3.4357   0.5325    41.6225      0.0001    31.054
Glucose                  -0.0091   0.0128     0.5086      0.4757     0.991
Hemoglobin                0.0052   0.0050     1.0727      0.3003     1.005
Heart rate                0.0103   0.0035     8.2809      0.0040     1.010
Potassium                -0.1836   0.1908     0.9264      0.3358     0.832
Sodium                    0.0796   0.0193    17.0633      0.0001     1.083
PaCO2                    -0.0358   0.0117     9.4100      0.0022     0.965
PaO2                     -0.0043   0.0031     1.9174      0.1661     0.996
pH                       -2.1791   1.3005     2.8075      0.0938     0.113
Platelets                 0.0028   0.0011     6.1650      0.0130     1.003
Respiratory rate         -0.0476   0.0159     8.9827      0.0027     0.953
Systolic blood pressure  -0.0027   0.0029     0.8335      0.3613     0.997
Temperature              -0.2468   0.0982     6.3120      0.0120     0.781
Urine output             -0.0003   0.0001     5.2272      0.0222     1.000
White blood cell count    0.0154   0.0078     3.8439      0.0499     1.015

Bold denotes probability value less than 0.25.

Step 2. Specification of the Maximum Model

The maximum model for LM2 contained the following main effects: source of

admission, gcs3, bun3, creat3, dbp3, FiO23, hr3, na3, PaCO23, PaO23, pH3, pts3, rr3,

temp3, uo3 and wbc3. All possible two-way interactions between the physiologic

variables were also offered to the maximum model (Appendix VII).

Step 3. Assessment for Multicollinearity

The maximum model, as described above, was assessed for multicollinearity

using Eigenanalysis and a condition index of 585.12 revealed the presence of severe

collinearity. Continuous variables were standardized and all two-way interactions were

recalculated using the standardized main effects. Eigenanalysis of this standardized

maximum model revealed a condition index of 12.35, indicating that standardization had

addressed the presence of multicollinearity.
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Step 4. Model Selection

After all non-significant interaction terms were removed from the model using a

backwards elimination process, all main effects that were not associated with significant

interaction terms were tested for significance using a likelihood ratio test. No main

effects were removed. The final results of the backwards selection process are presented

in Table 9.
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Table 9. Final regression parameters and associated probability values from multivariate
Logistic Model 2 (LM2).

Variable                                                                    Parameter  Standard    Wald     Probability   Odds
Name                                                                          Estimate     Error    Chi-Square   Value        Ratio
INTERCPT -4.106 0.427 92.423 0.0001 .
Hospital floor 1.153 0.451 6.541 0.0105 3.170
Hospital transfer 0.392 0.743 0.278 0.5978 1.480
ICU transfer 0.931 0.661 1.984 0.1590 2.538
Elective surgery 0.451 0.529 0.726 0.3941 1.570
Emergent surgery 1.206 0.454 7.055 0.0079 3.342
Glasgow coma scale(s3) -1.160 0.189 37.427 0.0001 0.313
Albumin(s3) -0.067 0.180 0.140 0.7074 0.935
Blood urea nitrogen(s3) 0.052 0.191 0.076 0.7824 1.054
Creatinine(s3) 0.219 0.207 1.126 0.2886 1.246
Diastolic blood pressure(s3) -0.726 0.182 15.831 0.0001 0.483
FiO2(s3) 0.501 0.163 9.444 0.0021 1.652
Heart rate(s3) 0.301 0.185 2.660 0.1029 1.352
Sodium(s3) 0.454 0.165 7.577 0.0059 1.575
PaCO2(s3) -0.665 0.274 5.868 0.0154 0.514
PaO2(s3) -0.529 0.229 5.334 0.0209 0.589
PH(s3) 0.043 0.158 0.075 0.7841 1.044
Platelets(s3) 0.163 0.180 0.822 0.3644 1.178
Respiratory rates(s3) -0.519 0.181 8.207 0.0042 0.595
Temperature(s3) -0.536 0.185 8.423 0.0037 0.585
Urine output(s3) -0.126 0.172 0.537 0.4635 0.881
White blood cells(s3) 0.214 0.197 1.182 0.2769 1.240
Glasgow coma scale(s3)*albumin(s3) -0.381 0.169 5.076 0.0243 0.683
Glasgow coma scale(s3)*blood urea(s3) 0.359 0.214 2.805 0.0939 1.432
Glasgow coma scale(s3)*creatinine(s3) -0.544 0.212 6.598 0.0102 0.580
Glasgow coma scale*platelets(s3) -0.434 0.176 6.033 0.0140 0.648
Albumin(s3)*diastolic pressure(s3) 0.388 0.176 4.867 0.0274 1.475
Blood urea nitrogen(s3)*FiO2(s3) 0.287 0.158 3.309 0.0689 1.333
Blood urea nitrogen(s3)
 *heart rate(s3)

0.526 0.200 6.911 0.0086 1.692

Blood urea nitrogen(s3)
 *respiratory rate(s3)

0.364 0.175 4.317 0.0377 1.440

Creatinine(s3)*sodium(s3) -0.285 0.121 5.527 0.0187 0.752
Creatinine(s3)*PaO2(s3) 0.572 0.229 6.209 0.0127 1.773
Creatinine(s3)*temperature(s3) -0.581 0.209 7.687 0.0056 0.559
Creatinine(s3)*urine output(s3) -0.391 0.184 4.470 0.0345 0.676
Diastolic pressure(s3)
 *white blood cells(s3)

0.511 0.209 5.992 0.0144 1.668

FiO2(s3)*pH(s3) 0.280 0.139 4.081 0.0434 1.324
FiO2(s3)*temperature(s3) 0.364 0.133 7.475 0.0063 1.439
FiO2(s3)*urine output(s3) 0.383 0.140 7.476 0.0063 1.467
FiO2(s3)*white blood cells(s3) -0.502 0.215 5.424 0.0199 0.605
Heart rate(s3)*respiratory rate(s3) -0.393 0.143 7.462 0.0063 0.675
PacO2(s3)*paO2(s3) -0.567 0.258 4.827 0.0280 0.567
PacO2(s3)*temperature(s3) -0.534 0.209 6.516 0.0107 0.586
PacO2(s3)*white blood cells(s3) 0.423 0.218 3.741 0.0531 1.527
PaO2(s3)*pH(s3) -0.557 0.143 15.156 0.0001 0.573
PaO2(s3)*white blood cells(s3) -0.792 0.220 12.955 0.0003 0.453
PH(s3)*temperature(s3) 0.251 0.134 3.499 0.0614 1.286
Platelets(s3)*urine output(s3) 0.680 0.167 16.595 0.0001 1.975
Temperature(s3)*urine output(s3) 0.555 0.154 12.944 0.0003 1.743

(s3) denotes standardized Day 3 variable. Variable name1*variable name2 denotes interaction term.
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Step 5. Regression Diagnostics

Based on performance on the developmental database, the c-statistic for LM2 was

0.927. The H-L goodness-of-fit ^
C  statistic was 10.059 with 8 df (p=0.2609), which

indicated good fit.

4.3.3 LMOT: Logistic Model constructed over time

Step 1. Variable Selection

Source of admission was the only demographic variable that was associated with

outcome (p<0.25) and qualified for entry into the maximum model.

The following physiological variables collected on day three of stay were

associated with mortality with a p-value less than 0.25: Glasgow Coma Scale score

(gcs3), blood urea nitrogen (bun3), creatinine (creat3), diastolic blood pressure (dbp3),

fraction of inspired oxygen (FiO23), heart rate (hr3), sodium (na3), partial arterial

pressure of carbon dioxide (PaCO23), partial arterial pressure of oxygen (PaO23), pH

(pH3), platelet count (pts3), respiratory rate (rr3), temperature (temp3), urinary output

(uo3), and white blood cell count (wbc3).

Step 2. Specification of the Maximum Model

The maximum model for LMOT contained the following main effects: pred(LM1),

source of admission, gcs3, bun3, creat3, dbp3, FiO23, hr3, na3, PaCO23, PaO23, pH3,

pts3, rr3, temp3, uo3 and wbc3. All possible two-way interactions between the

physiologic variables were offered to the maximum model. A complete listing of the

interaction terms generated for LMOT are listed in Appendix VII.

Step 3. Assessment for Multicollinearity

The maximum model described above was assessed for multicollinearity using

Eigenanalysis. The initial condition index of LMOT was 585.19, which indicated the

presence of severe collinearity. All continuous physiological variables were standardized

and 2-way interactions were recalculated. Eigenanalysis demonstrated the standardized

maximum model had a condition index of 12.36, indicating that the problems associated

with collinearity had been addressed.

Step 4. Model Selection
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After the initial backwards elimination pass, main effects not associated with

significant interaction terms were inspected for significance. Based on a non-significant

likelihood ratio test, Source of Admission [(-2 log likelihood for model with Source)

354.369 – (-2 log likelihood for model without Source) 347.564 = 6.805 with 5 df,

p=0.2356] was removed from the model. With removal of Source of Admission, INT3s73

(FiO2s3*temps3) became non-significant (p=0.1167) and was also removed based on the

results of a likelihood ratio test. Regression coefficients for the final LMOT model are in

Table 10.

Step 5. Regression Diagnostics

Based on the 811 patient developmental database, the c-statistic for LMOT was

0.947 and the H-L goodness-of-fit ^
C  statistic was 4.2021 with 8 df (p=0.8384).
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Table 10. Final regression parameters and associated probability values from multivariate
Logistic Model Over Time (LMOT).

Variable                                                     Parameter  Standard     Wald      Probability  Odds
Name                                                           Estimate      Error     Chi-Square    Values
Ratio
INTERCEPT -3.7003 0.3201 133.5989 0.0001 .
Predicted outcome from LM1 1.3931 0.1850 56.7243 0.0001 4.027
Glasgow coma scale(s3) -0.7202 0.2008 12.8704 0.0003 0.487
Albumin(s3) -0.0794 0.1927 0.1697 0.6804 0.924
Blood urea nitrogen(s3) -0.2368 0.1991 1.4153 0.2342 0.789
Creatinine(s3) 0.4292 0.1952 4.8344 0.0279 1.536
Diastolic blood pressure(s3) -0.6271 0.1901 10.8854 0.0010 0.534
FiO2(s3) 0.5581 0.1402 15.8481 0.0001 1.747
Heart rate(s3) 0.3570 0.1937 3.3975 0.0653 1.429
Sodium(s3) 0.3010 0.1903 2.5016 0.1137 1.351
PaCO2(s3) -0.1416 0.2278 0.3866 0.5341 0.868
PaO2(s3) -0.5861 0.2555 5.2622 0.0218 0.556
pH(s) 0.5100 0.2094 5.9332 0.0149 1.665
Platelets(s3) -0.1460 0.2050 0.5075 0.4762 0.864
Respiratory rate(s3) -0.5471 0.1942 7.9344 0.0049 0.579
Temperature(s3) -0.3964 0.1815 4.7737 0.0289 0.673
Urine output(s3) -0.3190 0.2035 2.4571 0.1170 0.727
White blood cells(s3) 0.0369 0.1750 0.0445 0.8329 1.038
Glasgow coma
scale(s3)*albumin(s3)

-0.3929 0.1882 4.3579 0.0368 0.675

Glasgow coma scale(s3)
 *blood urea nitrogen(s3)

0.5222 0.2290 5.1977 0.0226 1.686

Glasgow coma scale(s3)
 *creatinine(s3)

-0.3945 0.2127 3.4408 0.0636 0.674

Glasgow coma scale(s3)*sodium(s3) -0.3549 0.1512 5.5087 0.0189 0.701
Glasgow coma scale(s3)
 *platelets(s3)

-0.5241 0.2121 6.1087 0.0135 0.592

Blood urea nitrogen(s3)
 *heart rate(s3)

0.6146 0.2087 8.6759 0.0032 1.849

Creatinine(s3)*sodium(s3) -0.3195 0.1231 6.7365 0.0094 0.727
Creatinine(s3)*PaO2(s3) 0.3906 0.2335 2.7977 0.0944 1.478
Diastolic blood pressure(s3)
 *pH(s3)

0.3709 0.1546 5.7557 0.0164 1.449

Diastolic blood pressure(s3)
 *temperature(s3)

-0.4048 0.1771 5.2241 0.0223 0.667

Diastolic blood pressure(s3)
 *white blood cells(s3)

0.6817 0.2816 5.8602 0.0155 1.977

FiO2(s3)*PaCO2(s3) -0.4108 0.1561 6.9289 0.0085 0.663
FiO2(s3)*urine output(s3) 0.3114 0.1328 5.4938 0.0191 1.365
PaCO2*PaO2(s3) -0.5122 0.2641 3.7602 0.0525 0.599
PaO2(s3)*pH(s3) -0.3646 0.1653 4.8617 0.0275 0.694
PaO2(s3)*white blood cells(s3) -0.7966 0.2565 9.6494 0.0019 0.451
PH(s3)*respiratory rate(s3) -0.3038 0.1637 3.4454 0.0634 0.738
PH(s3)*temperature(s3) 0.2337 0.1080 4.6798 0.0305 1.263
Platelets(s3)*urine output(s3) 0.7969 0.2154 13.6869 0.0002 2.219
Temperature(s3)*urine output(s3) 0.3562 0.1674 4.5297 0.0333 1.428
Temperature(s3)
 *white blood cells(s3)

0.6755 0.1794 14.1823 0.0002 1.965

(s3) denotes standardized Day 3 variable.
Variable name1*variable name2 denotes interaction term.
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4.4 Artificial Neural Network model development

A complete description of the architecture of the back-propagation artificial

neural network employed in this comparison is presented in the Methods section.

4.4.1 ANN 1: Day 1 artificial neural network

Learning ceased after 123,800 learning epochs. At termination, the minimum

average classification error on the developmental data set was 0.0118. The minimum

average classification error on the validation set occurred after 23,800 learning epochs

and was 0.0875.

4.4.2 ANN 2: Day 3 artificial neural network

Learning on the day three model ceased after 119,200 learning epochs and a

minimum average error of 0.0173 was achieved on the 811 patient developmental data

set. The minimal average error on the 338 patient validation data set was 0.0701 and was

achieved after 19,200 learning epochs.

4.4.3 ANNOT : ANN developed over time

Learning was terminated after 127,600 events with a minimum average

developmental error of 0.0013922. The minimal validation set error, achieved after

27,600 learning epochs, was 0.06990.

4.4.4 GenNet: Genetic-algorithm network - day 3 data

Using a Genetic Breeding Pool size of 100, learning continued for 63 minutes

before progress was terminated. Termination was set to occur as soon as 20 consecutive

generations of learning resulted in a less than one percent improvement in the overall

mean square error. The overall mean square error for the developmental training set was

0.023 and the mean square error reported on the validation data set was 0.105.

4.4.5 Consultant’s Predicted Outcome

Of the 1,149 patients entered into the study, 308 had an expected duration of stay

greater than 72 hours but had either discharge or withdrawal of care scheduled during day

three morning rounds. These 308 patients were therefore not eligible for consultant’s

predictions.

Of the remaining 841 patients, 322 became eligible for consultant’s predictions on

either Saturday or Sunday. Consultant’s predictions could not be obtained prospectively

on the weekend and therefore of the total 1,149 patients entered into the study, 519 were
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truly eligible for prospective collection of the attending consultant’s predicted outcome.

Of the 519 truly eligible patients, a consultant’s prediction was obtained on 401.

The ICU-based mortality rate for the patients on whom a consultants outcome

prediction was available was 21.5 percent and the median length of stay was 7 days

(range 3 to 103). Of the patients who qualified for a consultants prediction but on whom a

consultant’s prediction was not available, the mortality rate was 20.45 percent and the

median length of stay was 5 days (range 3 to 179). There were no significant differences

between these two groups with respect to these outcomes.

For all 401 patients, the area under the ROC curve for the consultants predictions

was 0.8299±0.0285 and the Hosmer-Lemeshow goodness of fit ^
C  statistic was 36.79

(p<0.0001 with 10 degrees of freedom).

4.5 Predictive performance

The primary assessment of predictive performance was conducted by calculating

the area under the ROC curve generated by each individual model’s application to the

same 338 patient validation data set. This validation data set was randomly selected

before model development was begun. It was independent of the 811 patient data set used

for development and did not directly contribute to the estimation of regression

coefficients or network neuronal weights. Table 11 presents the area under the ROC

curve and the results of the Hosmer-Lemeshow goodness of fit test for each model

applied to the validation database.
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Table 11. Area under the ROC curve and goodness of fit of all models assessed on the 338
patient validation database.

Logistic Regression Models Artificial Neural Network Models

LM 1
(n=338)

 LM 2
(n=338)

LM Over
Time

(n=338)
ANN 1
(n=338)

ANN 2
(n=338)

ANN
Over Time

(n=338)

Genetic
Algorithm

(n=338)
AROC

±std err
0.7061

±0.0395
0.7158

±0.0395
0.7342

±0.0385
0.7173

±0.0391
0.7845

±0.0362
0.8095

±0.0347
0.7775

±0.0366

H-L ( ^
C )

p-value
119.8
p<0.001

1350
p<0.001

654.7
p<0.001

29.98
p=0.001

16.0
p=0.098

71.0
p<0.001

46.7
p<0.001

H-L (
^
C ): Hosmer-Lemeshow goodness of fit test  

^
C  statistic chi-square

p-value: probability of H-L gof chi-square with 10 degrees of freedom
aROC: Area under the receiver operating characteristic curve
Std err: standard error

4.5.1 Consultant’s predicted outcomes

One hundred and fifty-three of the 401 consultant predictions obtained were on

patients who were randomly selected to be in the validation database. The performance of

the consultant’s predictions was compared to LMOT and ANNOT using this 153 patient

validation database (Table 12).

Table 12. Area under the ROC curve and goodness of fit of LMOT, ANNOT and ICU
Consultants on a 153 patient validation database.

Model type
Logistic Model

Over Time
(n=153)

Neural Network
Over Time

(n=153)

Consultant’s
Predictions

(n=153)
AROC

±std err
0.6814

± 0.0518
0.8094

±0.0442
0.8210

±0.0432

H-L ( ^
C )

p-value
650.17
p<0.0001

7.6815
p=0.659

18.39
p=0.0486

H-L (
^
C ): Hosmer-Lemeshow goodness of fit test 

^
C  statistic chi-square

p-value: probability of H-L chi-square with 10 degrees of freedom
aROC: Area under the receiver operating characteristic curve
Std err: standard error.
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4.6 Primary comparisons:

All comparisons were planned a priori to address the following primary research

questions:

4.6.1. Can artificial neural networks perform mortality prediction in the ICU

significantly better than the currently used technique of multivariate logistic

regression?

Both LM1 and ANN1 were developed using patient demographic information

plus physiologic variables collected on day one of stay. Using the test for correlated

areas, there was no significant difference (aROC LM1 0.7061±0.0395 vs. ANN1

0.7173±0.0391, p=0.8953) between the discriminative ability of both approaches.

LM2 and ANN2 were developed using demographic information plus physiologic

variables collected on day three of stay. The area under the ROC curves for both models

were correlated and ANN2 was found to have significantly better discrimination (aROC

LM2 0.7158±0.0395 vs. ANN2  0.7845±0.0362, p=0.0355).

The approach used to develop LMOT and ANNOT was similar in that these models

included demographic data, day three physiologic data plus information collected on day

one of stay. The area under the ROC curves for these two models was correlated and

ANNOT was found to have significantly better discrimination (aROC LMOT 0.7342±0.385

vs. 0.8095±0.0347, p=0.0140).

4.6.2. For patients with a duration of stay over 72 hours, will scoring on day 3 of  ICU

stay rather than day 1 increase the predictive performance of both artificial neural

networks and logistic regression?

LM1 was developed using data available only on day one of stay and LM2 was

developed using only day three data. While there appeared to be a marginal increase in

area under the ROC curve from the use of day three data, this increase was not

statistically significant (aROC LM1 0.7061±0.0395 vs. LM2 0.7158±0.0395, p=0.80).

LMOT used information collected on day one in addition to day three information

and appeared to have an improved area under the ROC curve as compared to LM1. This

increase in aROC was not statistically significant (aROC LM1 0.7061±0.0395 vs. LMOT

0.7342±0.0385, p=0.5852).
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The area under the ROC curve for ANN1 was 0.7173±0.0391. ANN2, which was

developed using day three information, had an increased area under the ROC curve at

0.7845±0362, which trended towards statistical significance (p=0.0874). ANNOT, which

used all available demographic, day one and day three physiologic data, showed a

statistically significant improvement in discrimination over ANN1 (0.7173±0.0391 vs.

0.8095±0.0347, p=0.0598).

4.7 Secondary Comparisons

4.7.1. Can artificial neural networks perform mortality prediction in the ICU

significantly better than experienced clinicians, and thus have the potential to become

a useful clinical decision support tool ?

Based on a comparison of the area under the ROC curve, the discriminative

power of the consultant’s predictions was not significantly different from ANNOT

(0.8210±0.0432 vs. 0.8094±0.0442, p=0.7684). The consultants were able to discriminate

significantly better than LMOT (0.8210±0.0432 vs. 0.6814±0.0518, p=0.0015).
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5. Discussion

5.1 Selection of Primary Outcome

When a population of patients under investigation can gain or lose subjects over

the course of the study follow-up period, it is called a dynamic population. In the special

situation where the basic demographic traits of a dynamic population under study remain

relatively constant over the period of interest, the dynamic population can be said to be

stable. In the Intensive Care Unit, the number and basic demographics of the patients

requiring treatment remains relatively constant over time even though different patients

are continually being admitted and discharged. A population of patients requiring ICU

care studied over time can therefore be viewed as a stable dynamic population.

A stable dynamic population can be analyzed as a hypothetical fixed cohort if

entry into the study corresponds to an event marking the onset of the relevant risk period

of interest (i.e. study entry defines the beginning of the period during which the subject is

a candidate for developing the outcome of interest). 92 In most western countries,

intensive care is defined as “concerning itself with the management of patients with life-

threatening or potentially life-threatening conditions” and furthermore “such conditions

should be compatible with recovery.”93

According to the principles of outcomes research, to ensure an observational

study has attributional validity, the patients must be followed at least until this period of

increased risk has passed.94 Attributional validity is concerned with the question of

whether or not the care processes under investigation can actually be expected to

influence the study outcomes selected.

In Canada, the purpose of the Intensive Care Unit is to support patients through

an acute episode of life-threatening illness or injury. It is not the mandate of the ICU to

support chronic care patients. Although chronic care patients will be presented to the

ICU, it is invariably for an acute complication in their treatment regimen. Since the

mandate of the ICU is to resolve acute life-threatening episodes of major illness or injury,

it is appropriate to measure the impact of ICU care on an outcome that is directly

attributable to this acute care process.
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Patients are discharged from the ICU when the attending clinician determines that

they are no longer at an increased risk of mortality. In this way, a discharge from the ICU

can be viewed as a recovery from the original period of risk and thus is inarguably a

success of ICU care. A ‘failure’ in ICU care will result in mortality during a period of

time which corresponds with the initial period of high risk. The major assumption behind

these definitions is benign and assumes that the attending clinician is highly motivated to

keep the patient in the ICU until a true recovery is achieved.

 In this study, since entry into the ICU marks the onset of a period of high risk

and discharge from the ICU marks the end of that high risk period, we are able to treat

our stable dynamic population as a hypothetical fixed cohort and perform analysis on an

appropriate outcome that optimizes attributional validity. In other words,

recovery/mortality at ICU discharge is a valid outcome even though the follow-up period

for each patient is different.

5.2 Patient selection

The patient population admitted to this study was composed of medical, surgical,

neurological, cardiac surgery and trauma patients. During the 24 month data collection

period, investigators from the CCTC participated in numerous national and multinational

randomized controlled trials. In the context of these trials, the severity-of-illness adjusted

outcomes of patients admitted to the CCTC were demonstrated to be similar to patients

admitted to other tertiary-care teaching ICUs.95,96

The 3,728 patients admitted to the ICU during the period of this study accounted

for a total ICU stay of 17,080 days. The only restrictive entry criterion included in this

project was the requirement that discharge or withdrawal of care had not been scheduled

prior to the beginning of morning rounds on calendar day three of stay. While this

requirement excluded 68 percent of the total admissions to the CCTC, the 1,181 patients

that became eligible for entry into the study accounted for a total ICU stay of 14,088

days. This was 82 percent of the total bed-days used by the ICU during the study period.

 Although models were developed using data collected on day one of stay and the

predictive performance of these models (LM1 and ANN1) was compared directly to each

other, they were not intended to be representative of the broader class of models
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developed using day one data (i.e. APACHE III, SAPS II and MPM II). LM1 and ANN1

are highly restrictive and contain only 30 percent of the patients who would be eligible

for scoring in a true day one model. The primary purpose of developing and measuring

the predictive performance of both LM1 and ANN1 was to determine if these baseline

models could be improved by the incorporation of physiologic data that became available

over time. The direct comparison of LM1 and ANN1 has internal validity within the

constraints of this project, and was intended only to serve as a baseline from which to

assess model improvement.

5.3 Data abstraction and variable selection

The reliability of information abstracted from medical records using the

APACHE methodology has been shown to have high inter-rater reliability for the APS

variables (ICC 0.90) and age (ICC 0.998). The inter-rater reliability for the CHE

components has been reported as being much lower (ICC 0.66).27

The primary purpose of this project was to compare the predictive performance of

two different modeling approaches and not necessarily to compare existing scoring

systems nor to develop a totally new scoring system. In order to maximize internal

validity, data was collected using a widely accepted methodology. Variables were

restricted to those with documented predictive utility and a high degree of inter-rater

reliability. The data used for both the pilot project and the current project were abstracted

using the APACHE methodology.

The variables collected for the present study included all the physiologic variables

indicated for abstraction by APACHE III with two minor modifications: 1) the addition

of potassium and; 2) the substitution of hemoglobin for hematocrit. SAPs II identified

potassium as a significant predictor of outcome and it is readily available and easy to

abstract from the CCTC’s patient charts.55 Although APACHE III includes hematocrit,

which is a crude measure of the percent of blood volume composed of red blood cells,

hematocrit is not routinely measured in the CCTC. A direct measure of blood

hemoglobin content, recorded in grams of hemoglobin per litre of blood, was substituted

for the crude measure hematocrit.
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 The CHE portion of APACHE III has been shown to have the lowest inter-rater

reliability. The major demographic components of the CHE were readily available for

abstraction from the charts on day three and thus age, gender and source of admission

were collected. Both MPM II and SAPS II identify type of surgical admission (elective

surgery vs. emergent) as an important predictor of outcome. A comparison of the

variables abstracted for this project with those collected by MPM II, SAPS II and

APACHE III is presented in Table 13.

Table 13. Comparison of variables collected for this study with MPM II, SAPs II and
APACHE III variables.
Variable name MPM II24 SAPS II APACHE III This Study
Temperature X X X
Heart rate X X X
Respiratory rate X X
Blood pressure X X X
Hematocrit X
Hemoglobin X
White Blood Cell Count X X X
Albumin X X
Bilirubin X X X
Glucose X X
Sodium X X X
Potassium X X
Bicarb X
Creatinine X X X
Blood Urea Nitrogen X X X
Urine output X X X X
PaO2 and or FiO2 X X X X
PH and PaCO2 X X
Platelets X X
Prothrombin time X
Neurologic status X X X X
Age X X X X
Source of admission X X
Type of admission X X X X
Vasoactive drug use X
Mechanical ventilation X
Chronic Health Status X X

5.4 Database validation

Initial screening for irregularities in input variables was undertaken using

programs written to filter biologic impossibilities. Upper and lower limits for all

physiologic variables were based on an expert consensus process involving three

experienced critical care physicians. Each of the clinicians was requested to provide an

estimate of an upper and lower limit for all physiologic variables. The physicians were
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asked to consider the following question when they established these limits: what is the

highest/lowest value of this parameter that you have seen recorded from a patient who

was not in eminent risk of death at the time of sampling and was not attributable to a

laboratory error or an error in sample processing? The responses from all three clinicians

were combined to produce one set of limits for all physiologic parameters. The results of

this process were circulated to all three clinicians for final comment. Values in the

database that were detected as being out of range, as defined by these consensus- derived

limits, were identified and corrected.

In most cases, out of range or missing values in the computer database could be

abstracted directly from the study code book. In situations where these values were not

available in the code book, the original patient charts were requested from medical

records. Of the approximately 300 charts requested, 32 were found to be incomplete,

unavailable or missing at time of audit. Although the mortality rate and length of stay

observed in these 32 missing patients was not statistically significantly different from the

remaining 1,149 patients on whom complete information was available, the mortality rate

was approximately double that reported in the patients on whom complete information

was available.

The purpose of a hospital mortality and morbidity (M&M) rounds is to improve

future patient care by learning from past experiences. M&M rounds are usually

conducted on patients who undergo catastrophic events, such as mortality. In order to

learn from this catastrophic event, a patient’s chart is reviewed in detail by a number of

different physicians. During review for M&M rounds, the chart would be unavailable

from medical records. Since a patient who undergoes an unexpected death in the ICU is

more likely to have her/his chart reviewed at M&M rounds and the chart is thus more

likely to be unavailable from medical records, this could explain the apparently

disproportionate mortality rate observed amongst the patients with missing or unavailable

charts.

After completion of the retrospective chart audit, a true missing data rate of 2.62

percent was revealed. This is consistent with both the SAPS II study, which reported

missing information in 1.2 percent of all patients55 and the MPM II developmental data

set of 19,442 patients, which contained missing information in 1.6 percent of all cases.51
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5.4.1 Handling missing values

In the SAPS II and MPM II studies, patients with any missing data were excluded

from contributing towards the predictive instrument.51,55 In the APACHE III validation

study, imputed averages were used to replace missing values in order to allow these

patients to contribute towards the final predictive instrument.9 Although there are many

different ways of imputing missing values, in situations where databases are highly

correlated, replacement of missing values may best be achieved by the use of a unique

regression equation developed to predict each missing value.97 Since this entire project is

in fact a comparison of two ‘regression’ techniques (logistic vs. ANN), it was decided

that replacement of missing values with imputed averages would provide the most valid

baseline comparison of predictive performance.

The two reasons most often cited for neural networks' superior performance when

compared with more traditional statistical techniques are: 1) their ability to identify

patterns of predictors not detected by standard techniques; and 2) their ability to predict

accurately even with noisy or missing input data.70,98 Although there is some evidence to

suggest that neural networks may have the ability to identify novel predictors previously

not associated with well investigated outcomes,71 there is no published evidence to

suggest that neural networks can handle missing or noisy information better than logistic

regression can.

During the data collection phase of the current project, a second pilot project was

undertaken to investigate the performance of ANNs and logistic regression under

conditions of excessive missing input data. This second pilot used the predictive models

and the 138 patient validation data set developed in the initial pilot project (see Appendix

III for complete details of the first pilot).

To create noise in the validation data set, missing values were randomly

generated and replaced with imputed average values using a 27 column by 138 row

binary transformation matrix. Each element of this matrix was generated using the

Bernoulli function in Quattro® Pro for Windows, Version 5.0a and had a 95 percent
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probability of assuming a value of one, and a five percent probability of assuming a value

of zero. Each element of the validation data set was multiplied by its corresponding

element of this transformation matrix. A five percent missing data rate was used because

it was double the missing data rate experienced in the first pilot project and thus

represented a worst case scenario. Full details of this second pilot project are presented in

Appendix VIII.

As reported in the initial pilot project, the ANN and the logistic regression model

performed comparably in the 138 patient validation data set (aROC 0.8320 logistic

regression vs. 0.8178 for the ANN). In the validation data set with five percent of all

elements randomly replaced with imputed average values, both the logistic regression

and the ANN reported marginally reduced performance (aROC 0.804 for logistic

regression vs. 0.800 for the ANN). Since the performance of both the logistic regression

and the ANN models responded similarly to the introduction of noise into the inputs, it

was decided that handling missing values in the definitive project by substitution of

imputed average values would not likely account for any observed differences in

performance between the two different modeling approaches.

5.5 Logistic regression model development

5.5.1 Basic logistic regression modeling methodology

In order to make the logistic regression modeling methodology transparent and

repeatable, each step and decision point was outlined in advance.84 The explicit steps

used to develop the logistic regression model are outlined below:

Step 1. Variable Selection

Step 2. Specification of the Maximum Model

Step 3. Assessment for Multicollinearity

Step 4. Model Selection

Step 5. Regression diagnostics

Variable selection, or model entry criteria, was set to the more liberal threshold of

p<0.25 for entry into the maximum model to improve the possibility of including

important confounding variables in the model development process.82
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In this project, categorical demographic variables were represented as zero cell

referent dummy variables. Demographic and physiologic variables were treated as

separate chunks during the specification of interaction terms eligible for the maximum

model. While all physiologic variables were considered in interaction terms, interactions

between demographic and physiologic variables were not considered. The assumption of

a lack of significant interactions between demographic and physiologic variables is based

on the finding that the APACHE III, the MPM II and the SAPS II models did not detect

significant demographic-physiologic interactions.9,51,55

As a general principle, reliability in the estimation of the coefficients in any

regression model decreases as the model becomes more complex.92 Based on the results

of the pilot project, problems with multicollinearity were anticipated and parsimonious

model building strategies that would reduce the potential for multicollinearity were

embraced early in the model development process. Under these principles of parsimony,

three-way interaction terms were not considered for entry into the maximum model.

One of the major limitations of the backward elimination procedure is that it may

be more prone to problems associated with singularities in the information matrix than is

the forward selection process.92 To avoid this problem, collinearity was assessed using

Eigenanalysis before the modeling process was begun and as a result, all continuous

variables were standardized. Standardization (calculation of a z-score) was selected over

simple centering since it addresses issues associated with multicollinearity and scaling

problems. Scaling of the artificial neural network inputs was required in the pilot project

in order to achieve convergence (Appendix III).

Standardization is a simple linear transformation of the input variables and as

such, does not alter the estimated coefficients or estimated information matrix obtained

from a maximum likelihood procedure. Any apparent reduction in multicollinearity

achieved by centering or scaling is actually only an artifact when using an estimation

procedure that is inherently independent of linear transformations of the independent

variables.99

Numerous goodness of fit statistics that were originally developed to assess least-

squares linear regression models have been extended to assess logistic regression

models.100,101 The two most widely used goodness of fit statistics that were developed
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specifically for logistic regression are the Hosmer and Lemeshow ^
H statistic and the

Hosmer and Lemeshow ^
C statistic.85,82 Both of these Hosmer-Lemeshow tests are based

on grouping the estimated probabilities into deciles of risk and then calculating a

summary statistic that follows the chi-square distribution.

The major difference between the ^
C  and the ^

H  statistics lies in the approach

used to create the groupings. Although both tests have desirable properties and seldom

yield conflicting results, because it does not balance group sizes, the ^
H statistic becomes

unstable if the number of cases in any one particular grouping approaches zero.48,100,101

For this reason, the Hosmer-Lemeshow ^
C statistic was selected to assess the goodness of

fit of both the logistic regression and ANN models throughout this project.

5.6 Artificial neural network model development

Back-propagation neural networks are still the most common type of neural

network evaluated by medical researchers,75,102,103 but some researchers have begun to

investigate the application of other network architectures. One such investigation

compared the performance of a neural network developed using a genetic learning

algorithm to the performance of logistic regression.79 Both the genetic learning network

and the logistic regression model were developed to predict outcome in intensive care

unit patients and the investigators reported the genetic learning ANN outperformed the

logistic regression model based on area under the ROC curve in a validation data set

(0.863 vs. 0.753). Because this finding demonstrated the potential utility of genetic

ANNs, we undertook a direct comparison of a genetic learning ANN to a back

propagation ANN. Other researchers who have compared back-propagation networks to

alternative architectures have demonstrated the back-propagation architecture to be

superior.104

The genetic learning ANN and the back-propagation network were developed

using information collected on day three of stay and their predictive performance was

compared on the 338 patient validation data set. Although the back-propagation network

did not perform significantly better than the genetic learning network based on a direct

comparison of area under the ROC curves (0.7845 vs. 0.7775, p=0.4297), the back-

propagation network demonstrated good fit on the validation data set (H-L gof, p=0.098)
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whereas the genetic learning net did not (H-L gof, p<0.001). Based on the finding that the

genetic learning network failed to show significant improvements over the back-

propagation network, the back-propagation network was selected as the topology to be

evaluated throughout the remainder of the project.

The back-propagation networks developed for evaluation in this project were

constructed using widely accepted approaches and algorithms that are published in detail

elsewhere.105

5.7 Feasibility

5.7.1 Time frame for completion

The pilot project was conducted using a database collected from August 5, 1991

to February 5, 1992 in the Richard Ivey CCTC. During that 6 month period, 614 patients

stayed at least 24 hours and 422 were admitted for at least 72 hours. The average length

of stay was 5.67 days with a standard deviation of 7.68 days. Based on this pilot

information, it was estimated that the minimum required sample size of 1,200 patients

would be achieved after 18 to 24 months of data collection.

The minimum estimated sample size of 1,200 patients was achieved after 24

months of data collection. During the period of the study, the Ministry of Health reduced

the funding of the Richard Ivey CCTC from a 30 bed to a 26 bed ICU. This reduction in

the number of funded beds resulted in a marginally shorter average length of stay

(4.58±10.4 days) compared to that of the pilot project. The original study design called

for data collection to continue for 24 months to account for optimism in the original

recruitment rate estimates. Thus the minimum estimated sample size was achieved in the

a priori planned data collection period.

5.8 Primary comparisons:

The artificial neural network models developed using day three data (ANN2

aROC=0.7845) and the data collected over time (ANNOT aROC=0.8095) performed

marginally significantly better than the logistic regression models developed using the

same available data (LM2 aROC=0.7158 and LMOT aROC=0.7342). The only neural

network model that did not outperform its logistic regression counterpart was the day one

net (LM1 aROC=0.7061 vs. ANN1 aROC=0.7173).
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On initial inspection it might appear that both the day one logistic regression and

ANN models displayed relatively poor predictive performance on the validation database

as compared to other models developed using day one information. On validation data

sets, the MPM II model performed with an area under the ROC curve of 0.824 and the

SAPS II model performed with an area under the ROC curve of 0.86.51,55 It is important

to note however, that both ANN1 and LM1 were used to predict outcomes on patients

who had a minimum duration of stay of at least 72 hours.

In the most rigorous study to demonstrate the influence of length of stay on the

power of discrimination, the performance of a day one SAPS logistic regression model

was shown to decrease in direct relationship to length of stay (Figure 1). The area under

the ROC curve for this SAPS model showed a statistically significant decrease from 0.79

on day one to 0.72 in patients whose minimum duration of stay was three days.59 Given

that SAPS, LM1 and ANN1 are being evaluated in long stay patients(>3 days), the area

under the ROC curves for all three models is remarkably similar (0.72 SAPS, 0.70 LM1

and 0.72 ANN1).

Both the MPM II and the APACHE III investigators attempted to improve the

performance of their respective predictive models in long stay patients. The MPM II

models that were developed to adjust for changes over time demonstrated a progressive

decrease in the area under the ROC curve from MPM II24 to MPM72 (MPM II24

aROC=0.836, MPM II48 aROC=0.796 and MPM II72 aROC=0.752).52 The APACHE III

time dependent models also demonstrated a progressive decrease in area under the ROC

curve from 0.90 for the day one model, to 0.88 for the day 3 model and 0.84 for the day

15 model (Table 1).58

The loss in discrimination in the MPM II logistic regression models was thought

to reflect a true loss in discriminative potential inherent in the data. The authors

suggested that as patients remained in the ICU for longer periods of time, MPM II

demonstrated a progressive loss of discriminative power because either a) the patients’

conditions simply became too complex for accurate predictions to be obtained or b) since

they failed to respond to treatment, their physiological parameters became uninformative.

It was also demonstrated that after ICU admission, large numbers of patients either
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recovered enough to be transferred out of the ICU relatively quickly or they suffered

massive injury and died in a relatively short time.52

In this current project, although the performance of the logistic regression models

did not improve significantly as more information was included over time, (LM1

aROC=0.7061 to LMOT aROC=0.7342), they did not demonstrate a progressive loss of

discriminative power. The artificial neural network models actually demonstrated

marginally significantly improved discrimination (ANN1 aROC=0.7173 to ANNOT

aROC=0.8095, p=0.0598) when data available on day three of stay was used to update

the model.

Within the constraints of this project, back-propagation ANNs were able to

predict patient outcomes better than logistic regression models. When these artificial

neural network models were updated as more information became available over time,

they were able to significantly improve their power to discriminate between patients who

would subsequently live or die. There are four possible reasons that may explain these

findings:

1. ANN methodology can identify predictors that statistical techniques do not;

2. ANNs implicitly detect all possible interaction terms;

3. ANNs can identify complex nonlinear relationships; and

4. ANNs are insensitive to problems associated with multicollinearity.

5.8.1 Improved ability to identify predictors

In previous research, neural networks have been shown to place importance on

clinical signs not previously thought to be of diagnostic importance. For example, an

assessment of a neural network that was developed to aid in the diagnosis of acute

myocardial infarction placed importance on the presence of rales on auscultation to

improve its diagnostic accuracy.71 The presence of rales was not previously recognized in

the cardiology literature as a diagnostic sign of myocardial infarction.

The APACHE III, SAPS II and MPM II models all include the basic components

of the GCS score as an important predictor of outcome. The GCS score is a composite

index of global neurological status composed of assessments of eye opening, motor

response and verbal ability.106
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In this study, univariate analysis of the GCS collected on day one of ICU stay

found that it was not a significant predictor of outcome in patients with a minimum

length of stay of three days (p=0.9263). Even using the liberal inclusion criteria of a

univariate probability value less than 0.25 set for this project, GCS could not be included

in the maximum model for LM1.

According to neural network theory, all possible predictors are presented as inputs

to the model under development. The back-propagation algorithm uses progressive

feedback and error correction cycles to adjust numerical weights between the input

variables in order to maximize the overall predictive accuracy of the network. If an input

variable has low predictive value, the pathways that connect it to other neurons will be

assigned low numerical weights and thus it will play a small role in determining outcome.

One way to assess the relative contributions of each input variable is to sum all

connection weights in the network and compare the amounts directly attributable to each

input variable.71

Based on this contribution factor analysis, the most important predictor used by

the day one neural network was blood urea nitrogen, with a contribution factor of

0.05258, followed closely by albumin at 0.04564 and the Glasgow Coma Scale score at

0.04562.  Thus, the neural network developed using the day one data identified GCS as

the third most important predictive variable whereas classical statistical methodology did

not even identify GCS for inclusion in the maximum model.

The GCS was originally developed and validated in a population of head trauma

patients for scoring on initial presentation.106 Independent research has shown that GCS

scored on the day of admission accurately predicts outcomes in head trauma patients but

as length of stay increases, the day one GCS loses its predictive power.43 Since patients

admitted to the CCTC were a mixed population of general ICU patients, and not

specifically head trauma patients, it is not surprising that admission GCS was found to be

a poor predictor in this study: it was being used in a population of patients different from

its development population and even in head trauma patients, admission GCS is known to

have reduced predictive power in long stay patients.

The importance placed on GCS by the ANN would tend to argue that admission

GCS has some predictive value in long stay patients when combined with other
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physiological terms in the context of an interaction. Although the day one ANN did not

outperform the day one LM, the weight placed on GCS by ANN1 serves as an excellent

example of how neural network methodology can identify predictors that classical

statistical approaches may not.

The use of a univariate p-value of 0.25 to determine eligibility for entry into the

maximum logistic model is a somewhat arbitrary design constraint placed on the

regression methodology by the authors. It is possible that a model built using a forward

stepwise approach or one that used alternative criteria for eligibility would have detected

the predictive importance of GCS. Previous ICU-based predictive models have used

univariate screening with a p-value of 0.10 for inclusion.51,55 Employing an approach that

used univariate screening with a p-value of 0.25 for inclusion in the logistic regression

model was considered representative of accepted practice.

5.8.2 ANNs automatically detect all possible interactions

In the simplest form of ANN, all the variables in the input layer map directly to

the outcome layer using a simple linear mapping function (Figure 3). The coefficient, or

weight, associated with each individual input variable is determined using a pre-specified

algorithm optimized to minimize predictive error. One possible approach to determining

this weight is to use a modified least-squares algorithm. These weights or coefficients are

then combined and mapped onto the final outcome using a non-linear transfer function.

Figure 3. Diagrammatic representation of a simple neural network

Input layer    x1                     x2 x3

Weight                                            w1          w2         w3

Output layer  f(y)

Where  x1,x2,x3 are the input variables,
 w1,w2,w3 are the modifiable weights and
 f(y) is the logistic output function.

This simple network can be represented mathematically by Equation 2 and can be

seen to be algebraically equivalent to a regression equation containing main effects only.
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Equation 2. Algebraic representation of a simple neural network.

y = w1x1+w2x2+w3x3

Where x1,x2,x3 are the input variables,
y is the output and
w1,w2,w3 are the modifiable weights.

If a single hidden layer is inserted between the input layer and the output layer of

this simple network, the number of interconnections increases dramatically (Figure 4).

Figure 4. Diagrammatic representation of a neural network with one hidden layer

Input layer   x1                   x2           x3

Weights                                 w1   w2   w3    w4  w5     w6

Hidden layer  f(x4)             f(x5)
(transfer functions)                           w7          w8

Output layer            f(y)

where x1,x2,x3 are the input variables,
f(y) is the logistic output function,
w1-8 are the modifiable weights and
f(x4) and f(x5) are the hidden layer transfer functions.

The algebraic representation of a two layer network is much more complex, and

depends on the specific architecture of each network but in general terms, can be

represented by Equation 3.

Equation 3. Algebraic representation of single layer neural network

y = w7f(x4)+w8f(x5),

x4=w1x1+w3x2+w4x3,

x5=w2x1+w5x2+w6x3.
where x1,x2,x3 are the input variables,

y is the output,
w1-8 are the modifiable weights and
f(x4) and f(x5) are the hidden layer transfer functions.

 As a function of the complexity of the interconnections between each neuron, and

the use of nonlinear transfer functions within the hidden neurons, an ANN with one

hidden layer automatically models two-way and higher-order interaction terms.62 It must

be recognized that logistic regression can model higher order interaction terms and a

diligent investigator could detect all possible interactions using a logistic regression-

based modeling methodology but when logistic regression is used, interactions of interest

must be pre-specified.
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The fact that the specific methodology chosen for this study does not include all

possible interactions for inclusion in the LM was a design decision and may have limited

the generalizability of the findings. Previous ICU-based investigations have consistently

failed to demonstrate the importance of three-way or other complex interaction

terms.9,51,55 Given considerations of parsimony, a mildly restrictive approach to the

investigation of higher-order interaction terms was deemed reasonable.

Because of the ease with which ANNs model interaction terms, some authors

have suggested that different network architectures could be applied to data sets

specifically to detect the presence of higher-order interaction terms.62 Once detected,

these interactions could be investigated using classical techniques and included in any

statistical model building process.

5.8.3 ANNs automatically consider complex nonlinear relationships

In order to maintain homeostasis, physiological systems must exhibit complex

adaptive control systems behavior. For example, the delivery of oxygen throughout the

body is regulated by sensors and feedback mechanisms that constantly monitor demand

and adjust stroke volume, heart rate, minute ventilation, regional blood flow, blood

pressure, organ blood flow and even flow within and between capillary beds. The exact

means used to adjust the system under any given demand is decided by a delicate

interplay of an incredible number of feedback control mechanisms. In a critical illness

such as sepsis, the interplay between these control mechanisms can become perturbed in

such a way that homeostatic control is lost and extremely complex patterns of responses,

such as shock or pathologic supply dependency, are demonstrated.107

People who are critically ill and require intensive care are by definition,

exhibiting a pathologic physiological response to some external or internal stimulus.

Since homeostasis is often lost and because of the complexity of the control systems in

the human body, one should not expect these pathologic responses to be linear and

predictable. The database collected for this project is composed of physiologic variables

that could be expected to demonstrate complex, perhaps nonlinear interrelationships

between each other and with eventual outcome.

In Figure 4 and Equation 3, the terms f(x4) and f(x5) refer to representative hidden

layer transfer functions and f(y) refers to the output function of a representative two layer
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ANN. In a network that models a binary outcome, f(y) is typically set to the logistic

function but f(x4) and f(x5) can be set to any number of nonlinear transfer functions

(Figure 2).74 Previous authors have demonstrated that a multi-layered back-propagation

network with nonlinear transfer functions can be used to model the behavior of different

nonlinear systems.108 Although a three-layered network is required to approximate a

system with polyhedral defining equations,109 in general a two-layered network is

adequate to approximate most nonlinear systems.105 Since a two-layered network was

evaluated in the pilot project and since it demonstrated acceptable performance, two-

layered networks were evaluated in this current project.

The ability of a neural network to detect nonlinear relationships is a property of

the type of nonlinear transfer function assigned to each neuron layer. By adjusting the

weights assigned to the interconnections between each neuron, the back-propagation

algorithm can optimize the use of any specific transfer function. Thus if a significant

degree of nonlinearity exists between the input and the outcome variables, the back-

propagation algorithm will automatically adjust the weights between neuron layers to

reflect this relationship and because detection of these relationships is automatic, the end

user does not have to search for or specify higher order polynomials.75

One possible deficiency in the logistic regression modeling methodology

evaluated in this study is the lack of nonlinear terms as main effects. It is possible that the

overall explanatory power of the model could have been improved by the fitting of a

square, log or polynomial term. Alternately, a cubic splines regression could have been

used to determine cut-points for continuous variables such that a zero-cell referent

dummy variable could be used to model a nonlinear relationship.97 While there is

extensive evidence documenting the nonlinear relationships between physiological

parameters measured in the ICU,110 all the published logistic regression models based on

physiological parameters demonstrate that acceptable performance can be achieved in

models without nonlinear terms.9,51,55

Since this current project did not formally investigate the impact of nonlinear

terms in the regression model, a follow-up project should be designed. The reader is

cautioned that the results of this current project should not be generalized to logistic
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model building approaches considering nonlinear terms until subsequent research has

been undertaken.

5.8.4 ANNs are insensitive to problems associated with multicollinearity

In the initial attempt at developing a logistic regression model using the data that

became available over time, the model LMOT was first developed using all physiological

terms that were shown to be important univariate predictors on day one and on day three

(alb, bun, creat, dbp, FiO2, glu, hr, PaO2, pH, pts, rr, uo, wbc,gcs3, bun3, creat3, dbp3,

FiO23, hr3, na3, PaCO23, PaO23, pH3, pts3, rr3, temp3, uo3 and wbc3 plus all two-way

interactions). The presence of severe multicollinearity was detected in the maximum

model using Eigenanalysis (condition index 584.74) and correction was attempted

through standardization. After standardization, Eigenanalysis did not detect the presence

of multicollinearity (condition index 14.62) and the maximum model was presented to

the backwards selection process. When the maximum model was presented to SAS, the

estimates of the regression coefficients in the SAS output exhibited instability consistent

with the presence of multicollinearity and the backwards elimination process was

aborted.

This true multicollinearity was most likely a result of the complex time-dependent

relationships within the data. To avoid the negative effects of true multicollinearity due to

time-dependency, numerous design options are available. For example, problems

associated with multicollinearity could be reduced by using a forward selection approach

with forced entry of a limited number of main effects. Previous researchers have reduced

the impact of true multicollinearity by compressing all or part of the available input

variables using the expected probability output from a previous model as an input to the

current model.58 The final LMOT presented in this project contained the predicted output

of LM1 as an input variable instead of the individual day one variables and did not

exhibit any problems consistent with the presence of true multicollinearity.

ANNOT was presented with the same variables originally investigated for LMOT

(alb, bun, creat, dbp, FiO2, glu, hr, PaO2, pH, pts, rr, uo, wbc,gcs3, bun3, creat3, dbp3,

FiO23, hr3, na3, PaCO23, PaO23, pH3, pts3, rr3, temp3, uo3 and wbc3). Experience with

the logistic modeling process demonstrated the presence of multicollinearity that could

not be corrected using scaling or standardization techniques. In order to obtain valid
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estimates using logistic regression, a design approach that uses data compression was

required. The neural network was insensitive to the presence of the true multicollinearity

in this data set and did not exhibit any problems converging on a solution.

5.9 Relevance of findings

5.9.1 ICU management applications

Accurate day one logistic regression models allow managers to compare

outcomes between different ICUs through the calculation of observed to expected

mortality ratios.111 This validated approach to outcome comparison is a necessary

requirement to allow the process and structure investigations that serve as a basis for

quality assurance projects and resource allocation decisions.112

Previous research has demonstrated that the accuracy of logistic regression-based

admission scores decrease as a patient’s length of stay in the ICU increases.52,57,59

Although attempts have been made to improve the predictive performance of logistic

regression-based models in long stay patients, the resultant time dependent models have

not been able to improve performance significantly over the initial day one models.58 In

this project however, the time-dependent ANN developed on long stay patients

performed significantly better than a time-dependent logistic regression model.

The finding that time-dependent ANNs can lead to improved predictive

performance in long stay patients is not just of academic interest. While the patients

included in this project accounted for only 32 percent of all admissions to the ICU, they

accounted for 80 percent of the total ICU bed use (17,080 total bed days, 14,088

attributable to patients in this study). Since length of ICU stay is the single most

important surrogate measure of costs,113 the cohort of patients targeted for entry into this

study accounted for approximately 80 percent of the total ICU costs.

The inventory management rule of ‘80-20’ states that 20 percent of any business’

inventory usually accounts for 80 percent of its holding costs. Good inventory managers

use this knowledge to attempt to identify this high-cost 20 percent and target it for special

management attention. The improved outcome prediction of time-dependent ANNs could

allow ICU managers to increase the accuracy of severity adjusted outcome comparisons

in an economically important sub-group of patients. Hopefully this increased accuracy
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will lead to a better understanding of the process and structure measures that lead to

improved patient care from the perspective of the unit manager, the care deliverer, and

the patient.

5.9.2 Clinical utility

In this project, the predictive power of the time-dependent ANN was compared

directly to that of senior ICU consultants. Using the 153 patients in the randomly selected

validation database on whom consultant predictions were available, no significant

difference between the area under the ROC curves was found (ANNOT aROC 0.8094 vs.

0.8210). However, the consultant’s predictions demonstrated a significantly poor fit to

the data (H-L gof p=0.0486); whereas the ANNOT demonstrated good fit (H-L gof

p=0.659).

The ANN is an objective method of evaluating patient outcomes. It is probably

unreasonable to expect the ANN alone could support individual patient level treatment

decisions. Since the ANN did demonstrate performance similar to experienced clinicians,

it is possible that ANNs could prove useful to clinicians-in-training. In the ICU,

clinicians-in-training communicate daily with relatives of patients and are often asked for

estimates of ‘chances of survival’. The ANN could prove a useful tool in supplementing

or guiding their clinical judgement in communicating these estimates to patient’s

families.

Improvements in network performance may be achieved by including the

clinician’s risk estimates as an input variable. Perhaps by presenting the networks output

to the attending clinician as a ‘second opinion’, the clinician may feel more comfortable

making certain decisions. Comparing the performance of ANNs to that of experienced

clinicians was a secondary objective of this project and as such, these findings definitely

warrant further investigation before they are considered for applications in any clinical

situation.

5.10 Achieving improved performance with ANNs

This project discussed four inherent properties of neural networks: 1) ANN

methodology can identify predictors that statistical screening does not; 2) ANNs
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implicitly detect all possible interaction terms; 3) ANNs can identify complex nonlinear

relationships; and 4) ANNs are insensitive to problems associated with multicollinearity.

In order to give an ANN the opportunity to identify novel predictors, care should

be taken to present it with input variables that include all possible predictors. Projects

that present ANNs with inputs screened based on statistical principles may not realize the

full potential of using an ANN.

The type of problems where networks hold the most promise of acceptable

performance tend to be complex, have nonlinear interrelationships with outcome, and

have the potential for many different types of interaction terms. Although statistical

techniques can model complex nonlinear relationships, great care must be taken to

identify and include all appropriate terms. When investigating high order polynomials

and interaction terms, the statistical researcher is often forced to apply the principles of

parsimony in order to avoid the introduction of problems associated with

multicollinearity.

It is important to note that the time-dependent network developed in this project

was presented with an extremely complex data set which included at least 13 pairs of

physiological variables collected over time. These variables were standardized and

entered directly into the ANN and despite a high degree of interrelationships, the ANN

did not demonstrate any problems associated with multicollinearity. It is clear that ANNs

are stable under situations where there is a high degree of correlation between the input

variables.

It is likely that ANNs will demonstrate acceptable performance when they are

applied to problems that allow them to capitalize on all four of these inherent properties.

ANNs should be investigated when the problem is complex, nonlinear and contains the

possibility of severe multicollinearity in the inputs. When applied to these types of

problems, ANNs should be presented with all possible predictors as inputs to fully

capitalize on their potential to deliver optimal predictive performance.
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6. Summary
In this project, data were collected on 1,149 consecutive ICU admissions who

were present at morning rounds on calendar day three of ICU stay. A series of

representative logistic regression models was developed using a backwards elimination

model building process.82,84 The performance of these logistic regression models was

compared to a corresponding series of back-propagation ANNs.

Initial baseline models were developed using data collected on day one of stay

(LM1 and ANN1). A second pair of models (LM2 and ANN2) was developed using data

collected on day three of stay and a third pair was developed to incorporate changes over

time (LMOT and ANNOT) using a combination of day one and day three data.

Although all three LMs demonstrated good fit and calibration on the 811 patient

developmental database, they demonstrated poor fit (H-L p<0.001) on the 338 patient

validation data set. The predictive performance of the LM based on day three data was

not significantly different from the predictive performance of the baseline day one LM

(aROC LM1=0.7061 vs. LM2=0.7158, p=0.80). Incorporating changes over time into the

LM by using day one and day three information also did not improve predictive

performance (aROC LM1=0.7061 vs. LMOT=0.7342, p=0.5852).

Compared to the ANN developed using admission data, ANN2 demonstrated a

trend towards a significant improvement in predictive performance (aROC

ANN1=0.7173 vs. ANN2=0.7845, p=0.0874). By including both day three and day one

data, ANN3 actually demonstrated significantly better performance than ANN1(aROC

ANN1=0.7173 vs. ANNOT =0.8095, p=0.0598). Both ANN2 and ANN3 also performed

significantly better than their corresponding LM models (aROC LM2=0.7158 vs.

ANN2=0.7845, p=0.0355 and aROC LMOT=0.7342 vs. ANNOT=0.8095, p=0.0140).

There are four inherent properties of ANNs that could explain their ability to

predict better than LM in certain situations. First, it is well established in the literature

that ANNs can identify and place importance on predictors that classical statistical

techniques do not. Second, ANNs were designed to automatically identify and include

complex nonlinear relationships. Third, ANNs were also designed to implicitly detect
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and emphasize all possible interaction terms and finally, we demonstrated that ANNs are

inherently insensitive to problems associated with multicollinearity.

The ability to accurately predict outcomes in patients with an ICU stay greater

than three days has been a major limitation of logistic regression-based admission

models. The finding that ANNs can lead to improved predictive accuracy in this

economically important sub-group of patients could lead to improved insight into the

process and structure measures associated with optimal care.

Although these findings are novel and potentially extremely important, it must be

noted that this study optimized internal validity at the expense of potential

generalizability. It is suggested that a number of confirmatory studies need to be

undertaken before these findings can be generalized and applied elsewhere.
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7. Future directions for research

7.1 ICU management applications

The finding that ANNs delivered improved predictive performance in patients

with a duration of ICU stay greater than three days should be re-examined using a more

representative database. This database should contain demographic and daily physiologic

information on consecutive admissions from a representative sample of intensive care

units.

The previous study compared the performance of ANNs to a LM developed over

time using a widely accepted approach to logistic regression model development. It is

suggested that in the next study, the performance of an ANN developed using the

methodology outlined in this thesis be compared to the predictive performance of a

validated ICU scoring system, such as the APACHE III or MPM II score. More

importantly, the ANN developed using data collected over time should be compared with

the performance of the daily APACHE III predictive system or the MPM II24 or MPM72.

By performing this comparison, the potential improvement over an accepted risk

stratification system could be evaluated.

There is no need for this study to be prospective in nature as there are at least 3

databases (MPM II, SAPS II and APACHE III) in existence that could satisfy the

requirements for such a study.

7.2 Clinical utility

If the performance characteristics of the new ANN model developed on a more

representative database appears to offer a clinically significant improvement over

currently available scoring systems, a series of prospective clinical studies could be

undertaken to investigate potential uses and roles. After an appropriate model has been

developed and assessed using a database composed of a representative sampling of ICUs,

a series of prospective studies should be undertaken to compare its predictive

performance to that of expert clinicians and clinicians in training. The use of the

clinician’s predictions as an input variable could be investigated as a means of further

improving predictive performance.
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Previous research has demonstrated that the use of a validated predictive tool to

support clinical decisions has been somewhat controversial. It is possible that using a

combination of clinical judgement, artificial neural networks and/or logistic regression to

investigate the clinical decision process, insights could be gained that could translate into

improvements in the efficiency of care. It is this author’s recommendations that

management applications of ANNs be thoroughly understood and validated before any

further research into clinical applications be undertaken.
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Back-propagation artificial neural networks: 

A primer. 
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 The methods by which the human mind processes information and learns to solve 

new problems are still largely a mystery. In order to understand these processes, cognitive 

science researchers have developed many different types of artificial ‘thinking machines’. 

Within the last few years, some interesting results have been achieved by making the 

architecture of these thinking machines mimic the physical structure of the human mind.  

 In the human brain, the actual information processing is performed by a very 

simple element: the neuron. A typical neuron receives incoming signals from other 

neurons through a host of fine input structures called dendrites. The neuron processes the 

incoming signal and then sends out spikes of electrical activity through its axon, which 

splits into thousands of branches that connect with the dendrites of other neurons. ANNs 

are also composed of information processing 'neurons' that are interconnected to other 

similar neurons. The resulting networks of artificial neurons are simulated in a digital 

computer and are nowhere near as complex as the neural networks in the human mind 

that they are supposed to represent. 

 The topology, or layout, of the network determines the functions that it is able to 

perform. The presence of interconnections between neurons determines whether it is 

possible for one neuron to influence another. By setting up different patterns of 

interconnections between the artificial neurons, researchers have been able to rule out all 

kinds of theories about how the human brain processes information and have gained 

remarkable insights into how the mind actually learns. One interesting finding is that it is 

not the inherent information processing abilities of the human neuron that lends us our 

ability to solve complex problems, but rather the complexity of the interconnections 

between these neurons. 
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Biological neural networks are typically arranged in layers. For artificial networks, 

the most common arrangement is to have three layers of neurons; an input layer which 

passes information to a middle or hidden layer which in turn passes information to a final 

output layer. The sole function of the input layer is to distribute the raw information that 

is fed into the network to the hidden layer. The hidden layer passes the information to the  

output layer, which produces results that can be interpreted by the user. The results 

produced by the output 

layer can be continuous, 

dichotomous or even 

categorical.  

The most important 

network function is 

performed by the hidden 

layer. It is the neurons in 

this layer that have the job 

of associating a particular 

input pattern with the 

appropriate desired output 

values. The ability of the 

hidden layer to perform this 

job surprisingly well has made neural networks such useful tools. 

 The activity level, or value, of each hidden unit is determined by the activity of the 

input units and the strength of the connections between the input and hidden units. 

Similarly, the value of the output unit depends on the activity of the hidden units and the 

strength of the connections between the hidden and output units. The strength of the 

connections between neurons is determined by a numerical value or weight given to the 

interconnection. By being allowed to modify these weights, a hidden unit can learn to 

associate different inputs in such a way that the desired value of output is achieved. 

 Training a network to perform a particular task is achieved by presenting the 

network with example cases. Each example case consists of a group (vector) of predictor 

Simplified Neural Network 

input layer                      x1           x2           x3          x4 

modifiable weight 

 

hidden layer       f(x5)      f(x6)      f(x7) 
transfer function 
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modifiable weight 

 

output node        f(y) 

 



 

 

  

88 

variables presented to the input units together with the desired value of the outcome, 

which is presented to the output units. By constraining the input and the output layers, the 

hidden layer is forced to adapt to find a solution. The hidden layer uses a systematic 

algorithm to change the interconnection weights between itself and the input layer and 

between itself and the output layer such that the input values result in a final output as 

close as possible to the desired outcome value. In effect, the network searches for the 

appropriate transformation to map the predictor values onto the desired outcome. It starts 

with a transformation function chosen by the user based on the type of problem to be 

solved, and through a process of iterative error reduction, optimizes the parameters 

associated with this transformation until an acceptable solution is found. The parameters 

associated with the transformation are represented by the network's interconnection 

weights. 

 Obviously the approach used to change the interconnection weights is much more 

complex than described above. In fact, in order to calculate the appropriate amount to 

change each weight we must first calculate the rate at which the total output error changes 

in response to the proposed weight change. First year calculus tells us that the first order 

derivative of any function represents the rate of change of that function. This means that 

the rate of change of the overall output error is represented by the first order derivative of 

the total output error function. This quantity is referred to as the error derivative for the 

weight (EW) and must be calculated for each connection in order to determine how much 

its weight should be adjusted. 

 The most intuitive method used to find the EW is a simple iterative 'trial and error' 

process. Each weight on the network is adjusted after each case, very slightly, and one at 

a time. The effect of each weight change on the total output error is observed. In all but 

the most simple networks, this method is computationally inefficient, even for today's 

most powerful workstations. Although there are many possible approaches to the 

calculation of the EW, the method used by most networks today is called back-

propagation of the errors. Technical details of this algorithm are provided in the next 

section of this appendix. 
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 Once the EW is derived for each connection, the appropriate amount of change 

required for a particular weight can be calculated. It should be kept in mind that each 

weight can only be changed very slightly so as not to start increasing the error in the 

opposite direction. The total output error is measured by summing the square of the 

differences between all of the actual outputs and the expected outputs, which are provided 

by the training set. This process of weight changes is repeated until the total error reaches 

a minimum. 

 For example, if we assume that we have 100 training cases, the network weights 

would be adjusted after all the cases had been presented at least once. As long as the 

weight adjustments result in a decrease in the total error, we will keep presenting the 

same 100 cases to the network until a minimum error is reached. The same 100 cases can 

be presented to the network 100 times or more. Learning is terminated automatically 

when the total output error ceases to decrease in response to the presentation of the test 

cases. 

 Using the back-propagation algorithm, multi-layered networks have been taught to 

play backgammon, predict the secondary structure of proteins and recognize precancerous 

Pap-smears. Networks have also been trained to recognize hand written letters, interpret 

ECG strips and predict currency exchange rates. 

 Many topologies or layouts are possible for ANNs as there are many different 

approaches to finding the error derivative of the weights. The reason that back-

propagation networks have generated unprecedented interest by statisticians and other 

primary researchers is that they have the ability to simulate many statistical functions 

surprisingly well. Simple single-layered back-propagation ANNs can simulate general 

linear and logistic regression and three-layered networks can simulate multiple regression 

that considers all possible interactions between the predictor variables. Neural networks 

with multiple output nodes can even perform regression on polychotomous outcomes. 

Unfortunately, the main drawback of neural network techniques is their inability to 

estimate the overall effect of individual input parameters. They have, however, proven to 

be extremely accurate at predicting outcomes. 
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 Back-propagation neural networks can perform complex time series predictions. 

Researchers have shown that multi-layered back-propagation networks can perform very 

accurate predictions on time series generated by nonlinear delayed differential equations. 

The predictive error of these networks was lower than complicated techniques such as 

linear predictive methods, the local linear method of Farmer and Sidorowich, and direct 

and iterative Gabor polynomial approaches. 

 The most exciting application for the predictive powers of back-propagation 

networks comes from the engineering discipline of systems analysis, especially with 

respect to adaptive control systems. This field deals with the control aspects of complex 

feedback systems, which are inherently difficult to predict since their behavior is usually 

defined by both deterministic and stochastic processes. The stochastic nature of these 

systems makes it extremely hard to distinguish between noise in the input parameters and 

irregularities due to deterministic but nonlinear dynamic behavior. Linear prediction fails 

miserably due to the complex behavior patterns exhibited by such systems. Construction 

of the optimal nonlinear prediction function requires the a priori knowledge of the 

properties of the underlying nonlinear comprehensive equations for the system. Although 

no method can predict the stochastic component of the systems behavior, neural networks 

actually provide optimum solutions under most situations, as compared directly to the 

comprehensive defining equations. When these equations are not known a priori, the 

networks provide the only useful method of optimal prediction of the future responses to 

changes in the input parameters. 

 Recent advances in the understanding of the nature of cardiac physiology and 

immunology, have shown the potential of these systems to display complex nonlinear 

behavior. In response to certain inputs, such as exaggerated internal feedback loops, 

massive disease or aggressive treatment, many of the body's biological systems can 

exhibit strange and unexpected responses. These types of responses are typical of the 

more complex nonlinear dynamic adaptive control systems dealt with by engineers. If the 

underlying comprehensive equations were known, then these strange nonlinear responses 

could be predicted and avoided. Since ANNs have the ability to predict the responses of 

nonlinear dynamic adaptive control systems optimally and they can simulate complex 
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statistical operations, perhaps it is time to investigate thoroughly their potential to deal 

with problems faced in such multidisciplinary areas as intensive care medicine. 

The Back Propagation Algorithm 

 In order to reduce the error between the actual and desired output, the neural 

network must compute the error derivative of the modifiable weights (EW) for each 

connection to and from the hidden layer. The EW measures the rate of change of the error 

in response to a small change of a single interconnection weight. The back-propagation 

algorithm is the most widely used method for determining the EW. 

 In order to understand the back-propagation algorithm, the neural network must 

first be described in mathematical terms. Assume that unit j is a typical unit in the output 

layer and unit i is a typical unit in the hidden layer. The output unit determines its activity 

level by following a two-step procedure. First, it computes the total input from the hidden 

layer (xj,) using the formula 

x ywj i ij
i

= ∑  , 

where yi is the activity level of the ith unit in the previous layer and wij is the weight of 

the connection between the ith and jth unit. In other words, the output unit simply sums 

all the incoming signals from the hidden layer. 

 Next, the output unit passes this summed input through its own simple internal 

processing function. This results in the actual output yj. In most back-propagation 

networks, the logistic function is used: 

y
e

j xj
=

+ −

1
1

. 

 Once the activity of the output unit has been determined, the network computes 

the total error E, which is defined by the expression; 

Ε = −∑1
2

2( ) ,y dj
j

j  

where yj is the activity level of the output unit for the jth case and dj is the desired output 

of the jth case. Put simply, this is one half of the sum of the squares of the differences 
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between the actual and desired outputs. It is this quantity that we wish to minimize 

through iterative applications of the back-propagation algorithm. 

The back-propagation algorithm consists of four steps: 

1. Compute how fast the error changes (rate of change = first derivative of error function) 

as the activity of an output unit is changed. This error derivative (EA) is the difference 

between the actual and the desired activity 

EA
y

y dj
j

j j= = −
δ
δ
Ε  

2. Compute how fast the error changes as the total input received by the output unit is 

changed. This quantity (EI) is the answer from step 1 multiplied by the rate at which the 

output of a unit changes as its total input is changed. 

EI
x y

dy
dx

EA y yj
i j

j

j
j j j= = = −

δ
δ

δ
δ

Ε Ε
( )1  

3. Compute how fast the error changes as a single weight on a single connection into the 

output unit is changed. This quantity (EW) is the answer from step 2 multiplied by the 

activity level of the unit from which the connection emanates. 

EW
w x

x
w

EI yij
ij j

j

ij
j i= = =

δ
δ

δ
δ

δ

δ
Ε Ε  

4. Now we have isolated the first EW of one single connection, which tells us the effect of 

changing that connection's weight on the total output. Next we move back up the 

connection to the node from which this EW was calculated. We then compute how fast 

the error changes as the activity of this new unit in the hidden layer is changed. This 

crucial step allows back-propagation to be applied to multi-layered networks (and hence 

the name, we propagate the errors back-up the network). When the activity of a unit in the 

hidden layer changes, it affects the activity of the output unit to which it is connected. So 

to compute the overall effect on the error, we add together all these separate effects on the 

output unit. Each effect is simple to calculate. It is the answer in step 2 multiplied by the 

weight on the connection to that output unit. 

EA
y x

x
y

EI wi
i j

j

ij
j ij

j
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 By using steps 2 and 4, we can convert the EAs of one layer of units into EAs for 

the previous layer. This procedure can be repeated to get the EAs for as many previous 

layers as desired. Once we know the EA of a unit, we can use steps 2 and 3 to compute 

the EWs on its incoming connections. Once we have calculated the EW for each 

connection weight, which serves as a measure of the strength of effect that each weight 

has on the outcome, each weight is modified in order to reduce the total output error. This 

weight correction is verified by passing the test cases through the network a second time, 

and if necessary correcting the weights again. This iterative application of the back-

propagation algorithm continues until the magnitude of the total error function stops 

decreasing. 

 This brief description of the back-propagation algorithm was adapted from Hinton 

(1992). The back-propagation technique is one method for finding minima of a nonlinear 

function g(x) in a space of high dimension. For a comprehensive development, which is 

beyond the scope of this appendix, refer to Müller and Reinhardt (1991). 
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ABSTRACT 

The objective of this study was to compare and contrast two techniques of modeling 
mortality in a 30 bed multi-disciplinary ICU; neural networks and logistic regression. 
Fifteen physiological variables were recorded on day 3 for 422 consecutive patients 
whose duration of stay was over 72 hours. Two separate models were built using each 
technique. First, logistic and neural network models were constructed on the complete 
422 patient dataset and discrimination was compared. Second, the database was 
randomly divided into a 284 patient developmental dataset and a 138 patient validation 
dataset. The developmental dataset was used to construct logistic and neural net models 
and the predictive power of these models was verified on the validation dataset. On the 
complete dataset, the neural network clearly outperformed the logistic model (sensitivity 
and specificity of 1 and .997 vs. .525 and .966, area under ROC curve .9993 vs. .9259), 
while both performed equally well on the validation dataset (area under ROC of .82). The 
excellent performance of the neural net on the complete dataset reveals that the problem 
is classifiable.  Since our dataset only contained 40 mortality events, it is highly likely 
that the validation dataset was not representative of the developmental dataset, which led 
to a decreased predictive performance by both the neural net and the logistic regression 
models. Theoretically, given an extensive dataset, the neural network should  be able to 
perform mortality prediction with a sensitivity and a specificity approaching 95%. 
Clinically, this would be an extremely important achievement. In future trials, we intend 
to investigate the performance of an application-specific, state of the art neural network 
on a more representative, comprehensive prospective patient database. 
 

ROC = receiver operating characteristic 

INTRODUCTION 

 Today, it is common practice to assign a severity-of-illness score to a patient upon 
entry into the intensive care unit (ICU). Common ICU scoring systems include the Acute 
Physiology  and Chronic Health Evaluation (APACHE), the Mortality Probability Models 
(MPMs), the Simplified Acute Physiology Score (SAPS) and the Pediatric Risk of 
Mortality (PRISM) scoring system [1]. 
 The scoring strategies for each of these systems differ markedly, but all combine  
measures of current physiological status with various preexisting risk factors to produce a 
surrogate measure of risk or disease severity. This surrogate measure can then be used as 
a tool to aid in quality assurance, resource allocation, clinical decision making, the 
evaluation of new therapies and outcome prediction [1,2,3]. 
 In the APACHE and MPM approach to predicting outcomes, the day 1 risk factors 
identified by each model are entered into a logistic regression equation which then 
produces a predicted probability of mortality. These logistic regression models usually 
perform very well when predicting the expected mortality experience of an ICU but fall 
short of clinical usefulness when predicting mortality of the individual patient [2,4].  
 Recent research has shown that  events occurring after ICU admission are more 
useful predictors of outcomes than ICU admission status [4]. It has also been shown that 
if the APACHE II scores remain high in the face of continued maximal intervention, fatal 
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outcome can be predicted [5]. These studies indicate that a scoring system enacted some 
time after admission should have a better predictive performance than a scoring system 
enacted at admission. 
 Some researchers believe that understanding the patterns that are associated with 
survival or death may require the use of alternative mathematical approaches, such as set 
theory or fuzzy logic, which may ultimately be more fruitful than further attempts at 
refining existing systems [5, 6].  
 Alternative techniques such as nonlinear discrete neural networks, have recently 
begun to be applied to some classical medical problems. These techniques are derived 
from the engineering disciplines of pattern recognition and signals processing and are 
extremely promising because they offer the potential for ever-improving performance 
through dynamic learning [7].  
 A neural network trained on 351 patients with a high likelihood of myocardial 
infarction outperformed emergency room physicians when presented with 331 new cases 
of patients presenting with anterior chest pain. The physicians diagnosed myocardial 
infarction with a sensitivity and specificity of 77% and 84% respectively, whereas the 
neural network  performed with a sensitivity and specificity of 97.2% and 96.2% [8]. 
 Neural networks have outperformed clinicians on the diagnosis of hepatic masses 
[9],  pulmonary emboli [10], and breast tumors [11]. Artificial neural networks have also 
shown their potential usefulness in the ICU by predicting the length of ICU stays after 
cardiac surgery [12]. 
 The purpose of this study was to compare and contrast the performance of a 
relatively simple back-propagation, associative-learning neural network with a classical 
multivariate logistic regression approach to predicting ICU mortality based on day 3 
physiology scores. 
METHODS 
Patient Selection 
 During a six month period from August 5, 1991 to February 5, 1992, 614 patients 
were admitted to the 30 bed multi-disciplinary adult critical care unit. The only entry 
criterion for this study was a duration of stay greater than 72 hours. Four hundred and 
twenty-two patients met this criterion and were therefore eligible. 
Data Collection 
 Fifteen variables were recorded daily for the duration of stay for each study 
entrant. These variables were identified from the literature [13] and from clinical 
experience. They were; presence of acute renal failure,  packed cell volume, heart rate, 
FIO2, serum sodium, PaO2, pH, respiratory rate, systolic and diastolic blood pressures, 
serum potassium, temperature, white blood cell count, serum creatinine and the Glasgow 
coma score. The definition and recording of all variables was consistent with the methods 
outlined for data collection for the APACHE II scoring system [13].  
 The outcome of interest was ICU  mortality in patients with a duration of stay 
greater than 72 hours.  
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  During the period of the study, the variables were abstracted from patient records 
and stored in a central codebook. At the conclusion of the study, the codebook was 
entered into a spreadsheet program and then transferred into PC SAS version 6.041

Database Validation  
. 

 Primary data integrity was verified in PC SAS with algorithms written to filter 
out biological impossibilities and obvious data entry transpositions. Any values in 
conflict with the screening filters were re-entered directly from the study codebook. 
 Secondary validation was carried out by match-merging the study database with a 
readily available XENIX based ICU management information system (MIS). This MIS 
database allowed validation of date of birth, ICU entry date, ICU discharge date and ICU 
discharge status. Since the MIS database is utilized for billing purposes, its entries are 
double-verified and seldom in error. Conflicts with the study database were resolved by 
accepting the MIS database as correct. 
 Primary and secondary error detection rates were then compared as a means to 
increase confidence in data integrity. 
Scale Selection 
 Variables such as heart rate can convey different information about clinical 
interventions, outcomes and risks dependent upon the degree of elevation or depression 
above or below the normal range. For this reason, all variables except serum creatinine, 
presence of acute renal failure and the Glasgow coma score were separated into high or 
low distributions about the median. This resulted in a total of 27 variables. 
 In order to present the variables to the neural network, scaling was required. Each 
high or low distribution variable was non-parametrically transformed to the z-scale. All 
27 z-transformed variables were presented to the neural network and the logistic model to  
maintain consistency. 
Logistic Regression 
 Logistic regression was performed using PROC LOGIST, PC SAS, version 6.04 
[14]. Variables were considered as candidates for inclusion in the model based on a 
univariate logistic regression p-value 7 0.25 [15]. A multiple-step backward model 
selection method was used and variables were removed from the model if significance 
fell above a p-value of  0.10. After the final model was evaluated, first order interaction 
terms were assessed.  
Neural Network 
 A commercially available back-propagation, associative-learning neural network 
was used for this simulation2

                                                 
1PC SAS version 6.04, SAS Institute Inc., SAS Circle, PO Box 8000,Cary, NC, 27512-
8000, U.S.A. 

. All 27 variables were presented to a 3 layered network with 
27 input nodes, 18 hidden nodes and 1 output node. A logistic activation function was 
used and the output node generated a probability of mortality ranging between 0 and 1. 

 

2NeuroShell,Ward Systems group, Inc., 245 W. Patrick St., Frederick, MD 21701, U.S.A. 
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 Through an error-minimization technique known as back-propagation, the neural 
network optimizes weights between nodes such that important patterns between variables 
are recognized.  
Comparisons 
 The performance of the neural network and the logistic model were compared 
under two different conditions. First the neural network and the logistic regression 
techniques were exposed to the complete database. Their ability to discriminate between 
patients who lived or died was then compared. 
 Second, a developmental and validation subset were randomly selected from the 
complete dataset. The developmental dataset contained 284 patients and was used to 
create a new logistic model and a new neural network model. The two models were then 
rated on their ability to discriminate between patients who lived or died in the validation 
dataset, to which they had never been exposed.  
 Discrimination was assessed using the  area under the receiver operating 
characteristic (ROC) curve of each model [16]. Performance was also assessed by 
comparing the sensitivity and specificity of the approaches at the arbitrary classification 
threshold of 0.5. 
RESULTS 
Patient Population 
 The average age of the study subjects was 61 years and the average duration of 
ICU stay was 7.3 days. For the period of the study, the average day 1 APACHE II score 
was 25.3. The study population experienced a 9.5% mortality rate. 
Database Validation 
 Primary validation revealed a coding error rate of 2.1 % and independent 
secondary validation against the MIS database revealed an error rate of 2.4%. 
Comparison of study database errors against codebook values did not reveal any obvious 
transposition errors in the codebook. Only 0.2% of values were missing due to initial 
failure to perform laboratory tests at bedside.  
Logistic Regression 
Complete Dataset 
 The final model contained seven 
significant physiological variables. They 
were; presence of acute renal failure 
(ARF), high serum sodium, high pH, 
high diastolic blood pressure (DBP), the 
Glasgow coma score (GCS), high 
PaCO2,and low serum sodium (see table 
1). 
 
 At a classification threshold of 
0.5, the logistic regression model 
performed with a sensitivity of .525 and 
a specificity of .966. The positive 
predictive value was .618 and the 
negative predictive value was .951. The area under the ROC curve was .9259. 

Table 1 β SE OR p 
Intercept -1.6136 0.98 0.199 0.101 

ARF  2.3518 0.59 10.50 0.000 

Hi Na  0.9741 0.28 2.648 0.000 

Hi pH  0.9659 0.39 2.627 0.014 

Hi DBP -1.1326 0.38 0.322 0.003 

GCS -0.2390 0.06 0.787 0.000 

Hi PaCO2 -0.8835 0.49 0.413 0.076 

Low Na  1.6940  0.40 5.441 0.000 
β=regression parameter estimate, SE=standard error 
of regression parameter, OR=odds ratio,       p= p-
value 
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Validation Dataset 
 The developmental dataset of 284 patients produced a final model containing  
seven different significant variables. The seven variables were; high serum sodium, high 
diastolic blood pressure, GCS, high PaCO2, low serum sodium, low serum potassium, 
and low temperature (see table 2). 
 
 At a classification threshold of 
0.5, this model performed with a 
sensitivity of .133 and a specificity of 
.976. The positive predictive value 
was .400 and the negative predictive 
value was .902. The area under the 
ROC curve was .8320. 
 
Neural Network 
Complete Dataset 
 The network converged on a 
solution  after 15,837,750 iterations. This took 17:10:43 hours on a 27 MHz 386. 
 At a classification threshold of 0.5, the neural network  performed with a 
sensitivity of 1.0 and a specificity of .997. The positive predictive value was .976 and the 
negative predictive value was 1.0. The area under the ROC curve was .9993. 
Validation Dataset 
 Using the 284 patient developmental database, the network converged on the 
optimum predictive solution after 20,300 iterations, which took 17:21 minutes on a 27 
MHz 386. 
 At a classification threshold of 0.5, the neural network classified the 138 patient 
validation database with a sensitivity of .267 and a specificity of .976. The positive 
predictive value was .571 and the negative predictive value was .916. The area under the 
ROC curve was .8178. 

DISCUSSION 
 Back-propagation neural networks have traditionally excelled at classification 
(pattern recognition) problems. They are most useful in situations where the relationship 
between the input and the output is nonlinear and training data are abundant [17].  
 On the complete dataset, the back-propagation network clearly outperforms 
logistic regression with respect to the classification of mortality and survivability 
(sensitivity and specificity of 1.0 and .997 verses .525 and .966).  
 With the neural network performing with an area under the ROC curve of .9993 
and only one misclassified event, we can conclude that the 15 recorded day 3 
physiological variables adequately describe the mortality patterns experienced over the 
period of the study.  
 Baxt's neural network predicted myocardial infarction by placing diagnostic 
importance on clinical variables that have not previously been shown to be highly 
predictive for infarction [18]. Since the etiology of mortality is much more complex than 
the etiology of infarction, and since discrimination was so successful with our neural 

Table 2 β SE OR p 
Hi Na  1.2876 0.34 3.624 0.000 

Hi DBP -1.8092 0.47 0.164 0.000 

GCS -0.2357 0.06 0.790 0.000 

Hi PaCO2 -1.0222 0.50 0.360 0.042 

Low Na  1.8762 0.64 6.529 0.003 

Low K  2.0746 0.80 7.961 0.009 

Low Temp  0.4771 0.22 1.611 0.029 
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network, it suggests that patterns and predictors of mortality are being detected that were 
not detected using the traditional logistic regression approach.  
 When 2/3 of the complete dataset was used for model building and 1/3 for  
validation, the overall predictive performance of the two approaches  was identical (area 
under ROC = .82). The neural network was more sensitive over the range of decision 
thresholds while the logistic model was more specific. 
 Performance of any predictive model on a validation dataset depends on how 
representative the validation cases are of the developmental cases and on how well the 
model can classify the developmental dataset. Theoretically, if the validation dataset is 
truly representative of the developmental dataset, then the predictive performance will 
approach the level of developmental classification. 
 If the neural network were exposed to more cases, in the form of a larger dataset, 
there is no reason to suspect that a similar level of classification would not occur. If this 
dataset were extensive enough to cover most patterns of mortality, then a predictive 
sensitivity and specificity of over 95% could reasonably be expected. 
 Clinically this would be an extremely important achievement. Improved predictive 
performance would enhance quality assurance, resource allocation, and the evaluation of 
new therapies. With a sufficiently high predictive performance, the neural network would 
also be an unprecedented ancillary aid in clinical decision making at the individual level. 
 Primary research in neural networks is a dynamic and rapidly progressive field. 
We intend to investigate the performance of an application-specific, state of the art neural 
network on a more representative, comprehensive prospective patient database. 
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 In 1859, Charles Darwin proposed the three basic principles that he believed 

determined the survival of a species under his Theory of Evolution: the reproductive 

cycle; the force of natural selection; and diversity due to variation. Just as artificial 

intelligence (AI) researchers have used computer simulations to gain insights into how 

the human mind learns and solves problems, artificial evolution (AE) researchers have 

used computer simulations to gain a better understanding of the process of evolution. 

Based on insights gained from AE simulations, computational intelligence (CI) 

researchers developed the field of evolutionary computing (EC). In the broadest sense, 

EC involves the development and application of computer-based problem solving 

algorithms which incorporate the three basic principles of the Theory of Evolution. 

Problem solving algorithms which incorporate the principles of EC are called 

evolutionary algorithms (EA). 

 An EA is essentially an advanced iterative search algorithm. As the first step in 

solving a problem, an EA randomly generates a pool of potential solutions. The EA ranks 

the performance of each individual solution in this pool using an objective score. 

Solutions that perform poorly are discarded (force of natural selection) and a set of rules 

or operators is applied to the remaining solutions in order to generate a new pool of 

solutions with improved performance (reproduction).  

The performance of these second-generation solutions are ranked and those 

performing below the cut-off are discarded. This iterative cycle of natural selection and 

reproduction is repeated until a solution is found that satisfies the performance-related 

stopping criteria. The concept of diversity is introduced into the reproductive cycle by the 

rules and operators that determine how the performance of each successive generation of 

solutions is improved. 

An EA is similar to many other algorithms (least-squares regression, back-

propagation) that use iterative estimations to solve a problem. The uniqueness of the EA 

however, lies in the specific operators that are used to introduce diversity. In 1975, John 

Holland developed a pair of operators that allowed the genetic principles of 

crossover/recombination and mutation to be incorporated into EAs. An EA that contains 

crossover and mutation operators is referred to as a genetic algorithm (GA).  
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In genetics, crossover/recombination occurs when two different chromosomes 

combine and exchange DNA sequences to form two unique new chromosomes whereas a 

mutation occurs when a DNA sequence within one single chromosome is randomly 

rearranged. In the context of a GA, where the solution space may be composed of a series 

of rules generated by an expert system (if a then b, if b then c, if c then not f), a crossover 

operator could generate novel rules based on combinations of existing rules (if a then not 

f) whereas a mutation operator could generate a completely new rule by performing a 

random operation on one single rule (if a then d). 

GAs have proven to be particularly successful in searching for solutions to 

timetable scheduling problems. For example, when a university generates a course 

timetable, the most desirable solution is one without scheduling conflicts for the 

professors offering the courses and where students are able to schedule their courses 

according to their degree program requirements. Given that class size determines lecture 

hall requirements, lecture halls are constrained and must be shared between programs, 

professors and students can only be in one place at one time, professors often teach more 

than one course per semester for different programs and most degree programs require 

students to take more than one course per semester from within their own program and 

from other programs, the problem can become extremely complex. 

The first step to solving this timetable problem with a GA would involve using a 

very basic rule (e.g. professor conflicts) to generate a pool of tentative timetables. Each 

and every tentative timetable in this pool would then be evaluated for conflicts at the 

room, professor and program level. Tables with a low number of conflicts would be 

retained and subjected to crossover and mutation operators.  

A crossover operator could be programmed to flag the worst days from the best 

tables and search for replacements for these entire days from other tables. In this way, a 

timetable that performed well on Monday, Tuesday and Friday would be combined with a 

table that performed well on Wednesday and Thursday. A mutation operator could be 

programmed to detect specific problem areas within days and to randomly reorganize 

only those days. After all crossover and mutation operators had been performed, the new 

timetables would be evaluated for conflicts and the process repeated until a solution was 
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found. Although this process may require several thousand iterations to find the ideal 

timetable, the amount of computing resources and time required would be significantly 

less than any other search-based approach. 

 The United States Navy Center for Applied Research in Artificial Intelligence is 

currently involved in numerous projects investigating the application of GAs to intelligent 

systems. GAs have been used to improve the ability of an intelligent autopilot to make F-

14 carrier landings under adverse conditions and have also been used to enable an 

intelligent autonomous underwater vehicle to complete missions under fault scenarios 

that the original designers had not anticipated. 

 In the field of engineering, GAs have been employed to optimize the design of 

cam shapes, to aid in airfoil design and to improve the efficiency of computationally 

intensive simulations. The field of mobile robotics routinely employs GAs to improve the 

ability of  intelligent devices to handle unforeseen circumstances. More recently, primary 

artificial neural network (ANN) researchers have explored different applications of the 

basic principles of GAs to ANN optimization. 

NeuroShell 2, Release 3.03

The standard back-propagation algorithm begins its search for a solution by 

randomly generating the weights and coefficients for a single neural network. The 

GenNet algorithm begins by randomly generating the weights and coefficients for a pool 

of up to 100 such neural networks. 

, which is the software package used to develop ANNs 

for this project, supports the development of genetic adaptive learning algorithm 

networks (GenNets). Since the back-propagation algorithm is already an iterative 

estimation process (Appendix I), it requires only minor modifications to incorporate the 

important concepts of GAs. 

During one iterative learning cycle, the back-propagation algorithm calculates the 

errors for each and every case in the developmental data set and back-propagates these 

errors to adjust the weights and coefficients for each and every connection in the network. 

After this first iteration, the network is presented with all cases in the developmental data 

                                                 
3 Ward Systems Group, Inc., Executive Park West, 5 Hillcrest Dr., Frederick, MD. 21703, 
U.S.A. 
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set again, errors are re-calculated and back-propagated. In this way, the back-propagation 

algorithm causes the single network to converge upon a solution. 

The GenNet algorithm follows a similar cycle except errors are back-propagated 

for each and every network in the 100 network breeding pool. After each iterative cycle, 

networks are ranked and the poor performers are discarded. A crossover operator is used 

to generate novel networks by trading weights between successful networks and a 

mutation operator is used to randomly adjust weights within networks. After this first 

iteration, networks in the pool are presented with all cases in the developmental data set 

again, errors are re-calculated and back-propagated, networks in the pool are ranked and 

crossover and mutation operators are applied. The GenNet algorithm terminates when one 

of the networks in the pool satisfies the predefined stopping criteria. 

Since the GenNet approach develops and evaluates up to 100 potential solutions, 

it often takes significantly longer to produce a solution than a simple back-propagation 

algorithm. Simulation exercises have shown that genetic adaptive approaches to 

developing neural networks often succeed in situations where single networks have 

problems converging on a solution. Although the genetic adaptive algorithms have 

demonstrated advantages over the basic back-propagation algorithm, these benefits may 

be problem specific and the increased computational overhead may not be justified in all 

situations. 

Further Readings on Evolutionary Computing and the Genetic Algorithms 
Cawsey A. The essence of artificial intelligence. London: Prentice-Hall, 1998.  

Holland JH. Adaptation in natural and artificial systems. Ann Arbor, MI: The University 
of Michigan Press, 1975 (2nd ed ’92). 

Quagliarella D, Periaux J, Poloni C and Winter G. Genetic algorithms and evolution 
strategies in engineering and computer science: Recent advances and industrial 
applications. New York: John Wiley & Sons, 1998. 

Darwin C. On the origin of species by means of natural selection. London: Murray, 1859. 

Other Resources 
Navy Center for Applied Research in Artificial Intelligence 
http://www.aic.nrl.navy.mil/ 

The Genetic Algorithms Archive Page 
http://www.aic.nrl.navy.mil/galist/ 

http://www.aic.nrl.navy.mil/�
http://www.aic.nrl.navy.mil/galist/�


 

 

114 

 

 
 

Appendix VI 

 

 

Interaction terms included in LM1 



 

 

115 

 

SAS program used to generate interaction terms for LM1. 
 
 
data ssd.dev; 
set ssd.dev; 
int1=albs*buns 
;int2=albs*creats 
;int3=albs*dbps 
;int4=albs*fio2s 
;int5=albs*glus 
;int6=albs*hrs 
;int7=albs*pao2s 
;int8=albs*phs 
;int9=albs*ptss 
;int10=albs*rrs 
;int11=albs*uos 
;int12=albs*wbcs; 
;int13=buns*creats 
;int14=buns*dbps 
;int15=buns*fio2s 
;int16=buns*glus 
;int17=buns*hrs 
;int18=buns*pao2s 
;int19=buns*phs 
;int20=buns*ptss 
;int21=buns*rrs 
;int22=buns*uos 
;int23=buns*wbcs; 
;int24=creats*dbps 
;int25=creats*fio2s 
;int26=creats*glus 
;int27=creats*hrs 
;int28=creats*pao2s 
;int29=creats*phs 
;int30=creats*ptss 
;int31=creats*rrs 
;int32=creats*uos 
;int33=creats*wbcs; 
;int34=dbps*fio2s 
;int35=dbps*glus 
;int36=dbps*hrs 
;int37=dbps*pao2s 
;int38=dbps*phs 
;int39=dbps*ptss 
;int40=dbps*rrs 
;int41=dbps*uos 
;int42=dbps*wbcs; 
;int43=fio2s*glus 
;int44=fio2s*hrs 
;int45=fio2s*pao2s 
;int46=fio2s*phs 
;int47=fio2s*ptss 
;int48=fio2s*rrs 
;int49=fio2s*uos 
;int50=fio2s*wbcs; 
;int51=glus*hrs 
;int52=glus*pao2s 
;int53=glus*phs 
;int54=glus*ptss 
;int55=glus*rrs 
;int56=glus*uos 
;int57=glus*wbcs; 
;int58=hrs*pao2s 
;int59=hrs*phs 
;int60=hrs*ptss 
;int61=hrs*rrs 
;int62=hrs*uos 
;int63=hrs*wbcs; 
;int64=pao2s*phs 
;int65=pao2s*ptss 
;int66=pao2s*rrs 

;int67=pao2s*uos 
;int68=pao2s*wbcs; 
;int69=phs*ptss 
;int70=phs*rrs 
;int71=phs*uos 
;int72=phs*wbcs; 
;int73=ptss*rrs 
;int74=ptss*uos 
;int75=ptss*wbcs; 
;int76=rrs*uos 
;int77=rrs*wbcs; 
;int78=uos*wbcs; 
output; 
run
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Interaction terms included in LM2 
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data ssd.dev; 
set ssd.dev; 
int3s1=gcss3*albs3 
;int3s2=gcss3*buns3 
;int3s3=gcss3*creats3 
;int3s4=gcss3*dbps3 
;int3s5=gcss3*fio2s3 
;int3s6=gcss3*hrs3 
;int3s7=gcss3*nas3 
;int3s8=gcss3*paco2s3 
;int3s9=gcss3*pao2s3 
;int3s10=gcss3*phs3 
;int3s11=gcss3*ptss3 
;int3s12=gcss3*rrs3 
;int3s13=gcss3*temps3 
;int3s14=gcss3*uos3 
;int3s15=gcss3*wbcs3 
;int3s16=albs3*buns3 
;int3s17=albs3*creats3 
;int3s18=albs3*dbps3 
;int3s19=albs3*fio2s3 
;int3s20=albs3*hrs3 
;int3s21=albs3*nas3 
;int3s22=albs3*paco2s3 
;int3s23=albs3*pao2s3 
;int3s24=albs3*phs3 
;int3s25=albs3*ptss3 
;int3s26=albs3*rrs3 
;int3s27=albs3*temps3 
;int3s28=albs3*uos3 
;int3s29=albs3*wbcs3 
;int3s30=buns3*creats3 
;int3s31=buns3*dbps3 
;int3s32=buns3*fio2s3 
;int3s33=buns3*hrs3 
;int3s34=buns3*nas3 
;int3s35=buns3*paco2s3 
;int3s36=buns3*pao2s3 
;int3s37=buns3*phs3 
;int3s38=buns3*ptss3 
;int3s39=buns3*rrs3 
;int3s40=buns3*temps3 
;int3s41=buns3*uos3 
;int3s42=buns3*wbcs3 
;int3s43=creats3*dbps3 
;int3s44=creats3*fio2s3 
;int3s45=creats3*hrs3 
;int3s46=creats3*nas3 
;int3s47=creats3*paco2s3 
;int3s48=creats3*pao2s3 
;int3s49=creats3*phs3 
;int3s50=creats3*ptss3 
;int3s51=creats3*rrs3 
;int3s52=creats3*temps3 
;int3s53=creats3*uos3 
;int3s54=creats3*wbcs3 
;int3s55=dbps3*fio2s3 
;int3s56=dbps3*hrs3 
;int3s57=dbps3*nas3 
;int3s58=dbps3*paco2s3 
;int3s59=dbps3*pao2s3 
;int3s60=dbps3*phs3 
;int3s61=dbps3*ptss3 
;int3s62=dbps3*rrs3 
;int3s63=dbps3*temps3 
;int3s64=dbps3*uos3 
;int3s65=dbps3*wbcs3 
;int3s66=fio2s3*hrs3 
;int3s67=fio2s3*nas3 
;int3s68=fio2s3*paco2s3 
;int3s69=fio2s3*pao2s3 
;int3s70=fio2s3*phs3 
;int3s71=fio2s3*ptss3 
;int3s72=fio2s3*rrs3 
;int3s73=fio2s3*temps3 

;int3s74=fio2s3*uos3 
;int3s75=fio2s3*wbcs3 
;int3s76=hrs3*nas3 
;int3s77=hrs3*paco2s3 
;int3s78=hrs3*pao2s3 
;int3s79=hrs3*phs3 
;int3s80=hrs3*ptss3 
;int3s81=hrs3*rrs3 
;int3s82=hrs3*temps3 
;int3s83=hrs3*uos3 
;int3s84=hrs3*wbcs3 
;int3s85=paco2s3*pao2s3 
;int3s86=paco2s3*phs3 
;int3s87=paco2s3*ptss3 
;int3s88=paco2s3*rrs3 
;int3s89=paco2s3*temps3 
;int3s90=paco2s3*uos3 
;int3s91=paco2s3*wbcs3 
;int3s92=pao2s3*phs3 
;int3s93=pao2s3*ptss3 
;int3s94=pao2s3*rrs3 
;int3s95=pao2s3*temps3 
;int3s96=pao2s3*uos3 
;int3s97=pao2s3*wbcs3 
;int3s98=phs3*ptss3 
;int3s99=phs3*rrs3 
;int3s100=phs3*temps3 
;int3s101=phs3*uos3 
;int3s102=phs3*wbcs3 
;int3s103=ptss3*rrs3 
;int3s104=ptss3*temps3 
;int3s105=ptss3*uos 
;int3s106=ptss3*wbcs3 
;int3s107=temps3*rrs3 
;int3s108=temps3*uos3 
;int3s109=temps3*wbcs3 
;int3s110=rrs3*uos3 
;int3s111=rrs3*wbc3 
;int3s112=uos3*wbcs3; 
output; 
run;
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Pilot project 2: Comparing the ability of artificial neural networks  

and multivariate logistic regression to handle missing data. 
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INTRODUCTION 

 In North America, the intensive care unit (ICU) accounts for seven percent of all 

hospital beds, fifteen to twenty percent of all hospital expenditures, and approximately 

one percent of the Gross National Product [Knaus et al., 1989]. Because the demand for 

intensive treatment is growing and resources are increasingly constrained [Schneiderman 

et al., 1990], it has become even more important to make effective decisions with respect 

to management practices and resource utilization. Recently much interest has been 

directed towards finding more effective tools to aid in the support of both clinical and 

management decisions in the ICU. 

 Alternative techniques such as nonlinear discrete neural networks have been 

successfully applied in solving some interesting medical problems. These techniques are 

derived from the engineering disciplines of pattern recognition and signals processing and 

are extremely promising because they offer the potential for ever-improving performance 

through dynamic learning [Levin, 1991]. 

 A neural network trained on 351 patients with a high likelihood of myocardial 

infarction outperformed emergency room physicians when presented with 331 new cases 

of patients presenting with anterior chest pain. Attending clinicians diagnosed myocardial 

infarction with a sensitivity and specificity of 77% and 84% respectively, whereas the 

neural network  performed with a sensitivity and specificity of 97.2% and 96.2% [Baxt, 

1991]. 

 Neural networks have outperformed clinicians on the diagnosis of hepatic masses 

[Maclin and Dempsey, 1992],  pulmonary emboli [Scott and Palmer, 1993], and breast 

tumors [Goldberg et al., 1992]. Artificial neural networks have also shown their potential 

usefulness in the ICU by predicting the length of ICU stays after cardiac surgery [Tu and 

Guerriere, 1992]. 

 Recently a neural network model was trained to predict mortality in the ICU. This 

model performed extremely well on its developmental dataset with an area under ROC 

curve of 0.9993. True predictive performance was compared with a multivariate logistic 

regression model created on the same developmental dataset by predicting the outcome of 

138 admissions to which neither technique had previously been exposed. The true 
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predictive performance of each technique was found to be identical (area under ROC 

curve =0.82) [Doig et al., 1993]. 

 The two reasons cited most often for neural networks' superior performance 

compared with more traditional techniques are their ability (i) to identify patterns of 

predictors not recognized by standard techniques and (ii) to predict accurately even with 

noisy or missing input data [Baxt, 1991; Tu and Guerriere, 1993]. Subsequent research 

has shown that neural networks do indeed have the ability to recognize patterns of 

predictors previously not associated with well investigated outcomes [Baxt, 1992], but 

none has investigated the ability of neural networks to predict accurately based on noisy 

or missing input values. 

 The purpose of this project was to compare and contrast the performance of a 

relatively simple back-propagation, associative-learning neural network with a classical 

multivariate logistic regression model based on the ability to predict mortality in an ICU 

given a validation dataset containing randomly generated noise in the form of missing 

values. 

METHODS 

Development of Predictive Models 

 The development and performance of the neural network and logistic regression 

models used in this simulation have been described in detail elsewhere [Doig et al., 

1993]. They were developed on a prospectively collected dataset recorded on day 3 of 

admission to the intensive care unit to predict mortality during ICU stay. 

Database Creation 

 During a six month period from August 5, 1991 to February 5, 1992, 614 patients 

were admitted to the 30 bed multi-disciplinary adult critical care unit. The only entry 

criterion for this study was a duration of stay greater than 72 hours. Four hundred and 

twenty-two patients met this criterion and were therefore entered into the study. 

 The 422 patients were randomly divided into a 2/3 developmental subset and a 1/3 

validation subset. The 284 patient developmental dataset was used for the creation of both 

the neural network and the logistic regression models. The predictive performance of both 

models was then verified by predicting the outcomes of the patients in the 138 member 
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validation dataset. Neither logistic nor neural network models were exposed to any 

members of the validation datasets during model creation. 

Input Variables 

 Fifteen variables were recorded daily for the duration of stay for each study 

entrant. These variables were identified from the literature [Knaus et al., 1985] and from 

clinical experience. They were: presence of acute renal failure,  packed cell volume, heart 

rate, FIO2, serum sodium, PaO2, PaCO2, pH, respiratory rate, systolic and diastolic blood 

pressures, serum potassium, temperature, white blood cell count, serum creatinine and the 

Glasgow coma scale score. The definition and recording of all variables was consistent 

with the methods outlined for data collection for the APACHE II scoring system [Knaus 

et al., 1985]. The outcome of interest was ICU  mortality in patients with a duration of 

stay greater than 72 hours.  

  During the period of the study, the variables were abstracted from patient records 

and stored in a central codebook. At the conclusion of the study, the codebook was 

entered into a spreadsheet program and then transferred into PC SAS version 6.041

Database Validation  

. 

 Primary data integrity was verified in PC SAS with algorithms written to filter 

out biological impossibilities and obvious data entry transpositions. Any values in 

conflict with the screening filters were re-entered directly from the study codebook. 

 Secondary validation was carried out by match-merging the study database with a 

readily available XENIX based ICU management information system (MIS). This MIS 

database allowed validation of date of birth, ICU entry date, ICU discharge date and ICU 

discharge status. Since the MIS database is utilized for billing purposes, its entries are 

double-verified and seldom in error. Conflicts with the study database were resolved by 

accepting the MIS database as correct. 

 Primary validation revealed a coding error rate of 2.1% and independent 

secondary validation against the MIS database revealed an error rate of 2.4%. 

Comparison of study database errors against codebook values did not reveal any obvious 

transposition errors in the codebook. Only 0.2% of values were missing due to initial 

failure to perform laboratory tests at bedside. 
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 Normal physiological values were imputed for the 0.2% of missing values, and 

both logistic and neural network models were created on identical datasets containing 

these imputed normal values. 

Scale Selection 

 In order to improve convergence in the neural network and to reduce instability in 

the logistic model due to multicollinearity, scaling of the input variables was required. All 

variables except acute renal failure and the Glasgow coma scale score were transformed 

to the standardized normal distribution (z-scale).  

 Variables such as heart rate can convey different information about clinical 

interventions, outcomes and risks depending upon the degree of elevation or depression 

above or below the normal range. For this reason, all variables except serum creatinine, 

presence of acute renal failure and the Glasgow coma scale score were separated into high 

or low distributions about the mean. This resulted in a total of 27 variables, all of which 

were presented to the neural network and the logistic regression model building 

techniques. 

Logistic Regression 

 Logistic regression was performed using PROC LOGIST, PC SAS, version 6.04 

[SAS Institute Inc., 1990]. Variables were considered as candidates for inclusion in the 

model based on a univariate logistic regression p-value 0.25 [Hosmer and Lemeshow, 

1989]. A multiple-step backward model selection method was used and variables were 

removed from the model if significance fell above a p-value of 0.10. After the final model 

was evaluated, first order interaction terms were assessed. The final model contained 

seven significant main effects and no significant interactions (Table 1). 

Neural Network 

 A commercially available back-propagation, associative-learning neural network 

was used for this simulation2

 Through an error-minimization technique known as back-propagation, the neural 

network optimized weights between nodes such that important patterns between variables 

. All 27 variables were presented to a 3 layered network with 

27 input nodes, 18 hidden nodes and 1 output node. A logistic activation function was 

used and the output node generated a probability of mortality ranging between 0 and 1. 
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were recognized. Using the 284 patient developmental database, the network converged 

on the optimum predictive solution after 20,300 iterations, which took 17:21 minutes on a 

27 MHz 386. 

 A more detailed description of the development of the neural network and logistic 

regression models is provided elsewhere [Doig et al., 1993].  

Generation of Missing Values 

 The complete database was composed of 422 patients × 15 input variables which 

resulted in 6330 elements. The validation dataset comprised 1/3 of the complete dataset 

(138 patients ×15 inputs). The 15 input variables were scaled and divided to create a total 

of 27 inputs to both the logistic regression and the neural network models. 

 Since validation of the original study dataset revealed an initial error rate of 

between 2.1-2.5%, it was decided that to simulate the worst case practice setting, this 

error rate should be inflated by a factor of two. Thus an absolute error rate of 5% missing 

values was generated. 

 To generate missing values in the validation dataset, a 27 column by 138 row 

binary transformation matrix was created. Each member of this matrix was independent 

and identically distributed, with a  95% probability of assuming a value of 1, and a 5% 

probability of assuming a value of 0. These probabilities were constrained by the 

Bernoulli distribution and generated using Quattro Pro for Windows, Version 5.03

 Each element of the intact validation dataset was then multiplied by its 

corresponding element in the transformation matrix. When the transformation matrix 

element was equal to 1, the validation dataset element remained unchanged. When the 

transformation matrix element was equal to 0, multiplication resulted in a value of zero in 

the output matrix. A zero value in the input vector corresponds to a z-scaled 'normal' 

value. Thus missing values were represented by imputed normal values for the evaluation 

of both the neural network and the logistic regression model. 

. 

Statistical Comparisons 

  The neural network and the logistic regression model were compared based on 

their ability to predict mortality on the intact validation datasets. Next, their predictive 
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performance was compared based on their forecasts onto the validation dataset containing 

5% corrupt values. The predictive performance of each technique was compared via the 

area under the ROC curve calculated for each technique [Erdich and Lee, 1981]. 

RESULTS 

Patient Population 

 The average age of the study subjects was 61 years, the average duration of ICU 

stay was 7.3 days and the average day 1 APACHE II score was 25.3. The study 

population experienced a 9.5% mortality rate during ICU stay. 

Intact Validation Dataset 

 At a classification threshold of 0.5, the logistic regression model performed with a 

sensitivity of 0.133 and a specificity of 0.976. The positive predictive value was 0.400 

and the negative predictive value was 0.902. The area under the ROC curve was 0.8320. 

 At a classification threshold of 0.5, the neural network classified the 138 patient 

validation database with a sensitivity of 0.267 and a specificity of 0.976. The positive 

predictive value was 0.571 and the negative predictive value was 0.916. The area under 

the ROC curve was 0.8178. 

 Validation Dataset with 5% Missing Values 

 The logistic regression model performed with a sensitivity of 0.133 and a 

specificity of 0.967. The positive predictive value was 0.333 and the negative predictive 

value was 0.902. The area under the ROC curve was 0.804. 

 The neural network performed with a sensitivity of 0.200 and a specificity of 

0.959. The positive predictive value was 0.375 and the negative predictive value was 

0.908. The area under the ROC curve for the neural network was 0.800.  

DISCUSSION 

 Although previous research has shown that neural networks are relatively 

insensitive to noise in the input parameters [Müller and Reinhardt, 1991], and that 

introducing noise into the input can actually improve performance in certain situations 

[Sondergaard, 1992], this simulation revealed that a relatively simple three-layered back-

propagation network performed similarly to a multivariate logistic regression model (area 

under ROC curve = 0.80) when presented with a validation dataset with missing values 
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generated randomly at an overall rate of 5%. This is an extremely important finding, since 

the assumption that neural networks are insensitive to noise in the form of missing values 

could lead to a decreased vigilance during data collection, resulting in a loss in predictive 

performance. 

   Primary research into neural network architecture in the field of pattern 

recognition, where insensitivity to noise is extremely desirable, has yielded some 

interesting results. Lu and Szeto [1993] have shown that a network composed of subnets 

arranged in a hierarchical manner can perform extremely well in the presence of missing 

information. The subnets were trained to interpolate the appropriate value for the 

unknown information based on the known components of the input vector. This would be 

an extremely useful approach to dealing with missing information in biomedical systems, 

since it is known that certain clinical signs and symptoms do not present independently of 

each other. 

 For example,  it has been widely accepted since the Roman era that the clinical 

signs of pain, swelling, heat and redness are the hallmarks of inflammation [Reference?, 

450BC]. In any clinical case, swollen areas tend to be painful and reddened areas tend to 

be hot. Hence, the presentation of these four signs is not independent of each other. If the 

first three signs were present, that is, if a limb is painful, swollen and hot then imputing a 

'normal' value of not reddened would probably be inappropriate. In this situation a 

hierarchical neural network, and also a clinician, would infer that the most appropriate 

value for the unknown sign, based on the three known signs, would be reddened. The 

presence of reddening would therefor have been predicated based on previous clinical 

experience and interpretation of the present clinical situation. 

 Researchers in fields other than clinical medicine have investigated application 

specific network architectures optimized to filter both random noise and gross errors in 

input [Rohwer et al., 1992; Kramer, 1992]. This pre-processed input data is then passed 

to the actual decision making engine. Simulations have show that this type of 'self-

indexing' provides better results than assigning 'don't know' values to missing elements in 

the input dataset [Kak, 1993].  
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 The type of neural network used in this simulation has previously been shown to 

compare favorably with a multivariate logistic regression approach to predicting mortality 

in the ICU. The three-layered back-propagation network has traditionally excelled at 

classification (pattern recognition) problems and is most useful in situations where the 

relationship between the input and the output is nonlinear and training data are abundant 

[Hinton, 1992]. The three or four-layered back-propagation network is also the type 

preferred by medical researchers. If the motivation for applying a similar network to a 

particular problem domain is the presence of noise in the form of missing input data, then 

more complex techniques should be considered. 
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Table 1 β SE OR p 

Hi Na  1.2876 0.34 3.624 0.000 

Hi DBP -1.8092 0.47 0.164 0.000 

GCS -0.2357 0.06 0.790 0.000 

Hi PaCO2 -1.0222 0.50 0.360 0.042 

Low Na  1.8762 0.64 6.529 0.003 

Low K  2.0746 0.80 7.961 0.009 

Low Temp  0.4771 0.22 1.611 0.029 
β=regression parameter estimate, SE=standard 
error of regression parameter, OR=odds ratio,       
p= p-value 
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